# @file Diagnostics.R
#
# Copyright 2021 Observational Health Data Sciences and Informatics
#
# This file is part of PatientLevelPrediction
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' diagnostic - Investigates the prediction problem settings - use before training a model
#'
#' @description
#' This function runs a set of prediction diagnoses to help pick a suitable T, O, TAR and determine
#' whether the prediction problem is worth executing.
#'
#' @details
#' Users can define set of Ts, Os, databases and population settings. A list of data.frames containing details such as
#' follow-up time distribution, time-to-event information, characteriszation details, time from last prior event,
#' observation time distribution.
#'
#' @param plpData The data object to do the diagnostic on - if NULL you need to specify the connection settings below
#' @param cdmDatabaseName The name of the database being diagnosed
#' @param cohortName Name of the target cohort
#' @param outcomeNames Vector of outcome names
#' @param databaseDetails (only used is plpData is NULL) The database details created using \code{createDatabaseDetails}
#' @param restrictPlpDataSettings (only used is plpData is NULL) The restrictPlpDataSettings created using \code{createRestrictPlpDataSettings}
#' @param populationSettings The population setting details created using \code{createPopulationSettings}
#' @param outputFolder Location to save results for shiny app
#' @param minCellCount The minimum count that will be displayed
#'
#' @return
#' An object containing the model or location where the model is save, the data selection settings, the preprocessing
#' and training settings as well as various performance measures obtained by the model.
#'
#' \item{distribution}{list for each O of a data.frame containing: i) Time to observation end distribution, ii) Time from observation start distribution, iii) Time to event distribution and iv) Time from last prior event to index distribution (only for patients in T who have O before index) }
#' \item{incident}{list for each O of incidence of O in T during TAR}
#' \item{characterization}{list for each O of Characterization of T, TnO, Tn~O}
#'
#'
#' @export
#' @examples
#' \dontrun{
#' #******** EXAMPLE 1 *********
#' }
diagnostic <- function(
plpData = NULL,
cdmDatabaseName = 'none',
cohortName,
outcomeNames,
databaseDetails,
restrictPlpDataSettings,
populationSettings,
outputFolder = NULL,
minCellCount = 5
){
if(is.null(plpData)){
checkIsClass(databaseDetails, 'databaseDetails')
cdmDatabaseName <- attr(databaseDetails, 'cdmDatabaseName')
checkIsClass(restrictPlpDataSettings, 'restrictPlpDataSettings')
}
if(class(populationSettings) != 'list'){
populationSettings <- list(populationSettings)
}
lapply(populationSettings, function(x) checkIsClass(x, 'populationSettings'))
if(!is.null(outputFolder)){
if(!dir.exists(file.path(outputFolder))){
dir.create(file.path(outputFolder), recursive = T)
}
}
if(!is.null(plpData)){
cohortId <- unique(plpData$cohorts$cohortId)
outcomeIds <- unique(plpData$outcomes$outcomeId)
} else{
cohortId <- databaseDetails$cohortId
outcomeIds <- databaseDetails$outcomeIds
}
#create cohort names csv:
if(file.exists(file.path(outputFolder,'namesdetails.csv'))){
cohortNames <- utils::read.csv(file.path(outputFolder,'namesdetails.csv'))
newNames <- data.frame(ids = c(cohortId,outcomeIds),
names = c(cohortName,outcomeNames))
newNames<- newNames[!newNames$ids%in%cohortNames$ids,]
if(length(newNames$ids)>0){
cohortNames <- rbind(cohortNames, newNames)
}
} else {
cohortNames <- data.frame(ids = c(cohortId,outcomeIds),
names = c(cohortName,outcomeNames))
}
ParallelLogger::logInfo('Saving cohort names to csv')
utils::write.csv(cohortNames, file.path(outputFolder,'namesdetails.csv'), row.names = F)
#create settings:
if(file.exists(file.path(outputFolder,'settings.csv'))){
settings <- utils::read.csv(file.path(outputFolder,'settings.csv'))
} else{
settings <- c()
}
maxAnalysis <- ifelse(is.null(settings$analysisId), 0, max(settings$analysisId))
for(i in 1:length(populationSettings)){
for( j in 1:length(outcomeIds)){
maxAnalysis <- maxAnalysis + 1
settingsTemp <- data.frame(analysisId = maxAnalysis,
cdmDatabaseName = cdmDatabaseName,
cohortId = cohortId,
outcomeId = outcomeIds[j],
riskWindowStart = populationSettings[[i]]$riskWindowStart,
startAnchor = populationSettings[[i]]$startAnchor,
riskWindowEnd = populationSettings[[i]]$riskWindowEnd,
endAnchor = populationSettings[[i]]$endAnchor
)
settings <- unique(rbind(settings, settingsTemp))
}
}
ParallelLogger::logInfo('Saving settings to csv')
utils::write.csv(settings, file.path(outputFolder,'settings.csv'), row.names = F)
if(is.null(plpData)){
# get outcome and cohort data - dont need covariates
ParallelLogger::logInfo('Extracting data')
data <- do.call(
getPlpData,
list(
databaseDetails = databaseDetails,
covariateSettings = FeatureExtraction::createDefaultCovariateSettings(),
restrictPlpDataSettings = restrictPlpDataSettings
)
)
} else {
data <- plpData
}
outcomeIds <- unique(data$outcomes$outcomeId)
ParallelLogger::logInfo('Calculating distributions')
distribution <- getDistribution(cohort = data$cohorts,
outcomes = data$outcomes,
outputFolder = outputFolder,
databaseName = cdmDatabaseName)
# get survival data:
ParallelLogger::logInfo('Calculating survival data')
if(file.exists(file.path(outputFolder, 'survival.csv'))){
surv <- utils::read.csv(file.path(outputFolder, 'survival.csv'))
} else {
surv <- c()
}
survTemp <- lapply(outcomeIds, function(oi) getSurvival(plpData = data,
outcomeId = oi,
cohortId = cohortId,
cdmDatabaseName = cdmDatabaseName ))
surv <- unique(rbind(surv, do.call('rbind', survTemp)))
if(!is.null(outputFolder)){
utils::write.csv(surv, file.path(outputFolder, 'survival.csv'), row.names = F)
}
# do characterisation - needs TAR
ParallelLogger::logInfo('Calculating proportion and characterizations')
if(file.exists(file.path(outputFolder, 'proportion.csv'))){
proportion <- utils::read.csv(file.path(outputFolder, 'proportion.csv'))
} else {
proportion <- c()
}
if(file.exists(file.path(outputFolder, 'characterization.csv'))){
characterization <- utils::read.csv(file.path(outputFolder, 'characterization.csv'))
} else {
characterization <- c()
}
for(i in 1:length(outcomeIds)){
oi <- outcomeIds[i]
for(j in 1:length(populationSettings)){
population <- createStudyPopulation(
plpData = data,
outcomeId = oi,
populationSettings = populationSettings[[j]]
)
analysisId <- getAnalysisId(
settings = settings,
cohortId = cohortId,
outcomeId = oi,
riskWindowStart = populationSettings[[j]]$riskWindowStart,
startAnchor = populationSettings[[j]]$startAnchor,
riskWindowEnd = populationSettings[[j]]$riskWindowEnd,
endAnchor = populationSettings[[j]]$endAnchor
)
proportionTemp <- getProportions(
population,
analysisId = analysisId,
cdmDatabaseName = cdmDatabaseName,
cohortId = cohortId,
outcomeId = oi,
minCellCount = minCellCount
)
proportion <- unique(rbind(proportion, proportionTemp))
characterizationTemp <- covariateSummary(
covariateData = plpData$covariateData,
cohort = population %>% dplyr::select(.data$rowId),
labels = population %>% dplyr::select(.data$rowId, .data$outcomeCount)
)
characterizationTemp <- characterizationTemp[,c('covariateId',
'covariateName',
'CovariateCount',
'WithOutcome_CovariateCount',
'WithNoOutcome_CovariateCount',
'WithOutcome_CovariateMean',
'WithNoOutcome_CovariateMean')]
characterizationTemp[is.na(characterizationTemp)] <- 0
ind <- (characterizationTemp$CovariateCount < minCellCount)
ind2 <- (characterizationTemp$WithOutcome_CovariateCount < minCellCount) | (characterizationTemp$WithNoOutcome_CovariateCount < minCellCount)
characterizationTemp[ind,'CovariateCount'] <- -1
characterizationTemp[ind,'WithOutcome_CovariateCount'] <- -1
characterizationTemp[ind,'WithNoOutcome_CovariateCount'] <- -1
characterizationTemp[ind,'WithOutcome_CovariateMean'] <- -1
characterizationTemp[ind,'WithNoOutcome_CovariateMean'] <- -1
characterizationTemp[ind2,'WithOutcome_CovariateCount'] <- -1
characterizationTemp[ind2,'WithNoOutcome_CovariateCount'] <- -1
characterizationTemp[ind2,'WithOutcome_CovariateMean'] <- -1
characterizationTemp[ind2,'WithNoOutcome_CovariateMean'] <- -1
# add analysisId
characterizationTemp$analysisId <- analysisId
characterization <- rbind(characterization, characterizationTemp)
}
}
if(!is.null(outputFolder)){
utils::write.csv(proportion, file.path(outputFolder, 'proportion.csv'), row.names = F)
utils::write.csv(characterization, file.path(outputFolder, 'characterization.csv'), row.names = F)
}
# Add all to zip file -------------------------------------------------------------------------------
ParallelLogger::logInfo("Adding results to zip file")
zipName <- file.path(outputFolder, paste0("Results_", cdmDatabaseName, ".zip"))
files <- list.files(outputFolder, pattern = ".*\\.csv$")
oldWd <- setwd(outputFolder)
on.exit(setwd(oldWd), add = TRUE)
DatabaseConnector::createZipFile(zipFile = zipName, files = files)
ParallelLogger::logInfo("Results are ready for sharing at: ", zipName)
result <- list(distribution = distribution,
proportion = proportion,
characterization = characterization,
survival = surv)
return(result)
}
getSurvival <- function(plpData, outcomeId, cohortId, cdmDatabaseName ){
object <- plpData$outcomes %>%
dplyr::filter(.data$outcomeId == !!outcomeId) %>%
dplyr::right_join(plpData$cohorts, by ='rowId') %>%
dplyr::group_by(.data$rowId) %>%
dplyr::summarise(daysToObsEnd = min(.data$daysToObsEnd),
daysToEvent = min(.data$daysToEvent))
object$censoredTime <- apply(object[,-1], 1, function(x) min(x, na.rm = T))
object$event <- 0
object$event[!is.na(object$daysToEvent)] <- ifelse(object$event[!is.na(object$daysToEvent)] <= object$censoredTime[!is.na(object$daysToEvent)], 1,0)
result <- object %>% dplyr::group_by(.data$censoredTime) %>%
dplyr::summarise(events = sum(.data$event),
censored = length(.data$event)-sum(.data$event))
totalCensored <- lapply(unique(object$censoredTime), function(i) sum(result %>% dplyr::filter(.data$censoredTime <= i) %>% dplyr::select(.data$censored)))
totalCensored <- data.frame(censoredTime = unique(object$censoredTime),
totalCensored = unlist(totalCensored))
totalLost <- lapply(unique(object$censoredTime), function(i) sum(result %>% dplyr::filter(.data$censoredTime <= i) %>% dplyr::mutate(lost = .data$censored + .data$events) %>% dplyr::select(.data$lost)))
totalLost <- data.frame(censoredTime = unique(object$censoredTime),
nAtRisk = nrow(plpData$cohorts) - unlist(totalLost))
result <- result %>%
dplyr::left_join(totalCensored, by ='censoredTime') %>%
dplyr::left_join(totalLost, by ='censoredTime')
result$outcomeId <- outcomeId
result$cohortId <- cohortId
result$cdmDatabaseName <- cdmDatabaseName
return(result)
}
getDistribution <- function(cohort,
outcomes,
outputFolder = NULL,
databaseName){
cohortId <- unique(cohort$cohortId)
outcomesIds <- unique(outcomes$outcomeId)
if(file.exists(file.path(outputFolder, 'distribution.csv'))){
result <- utils::read.csv(file.path(outputFolder, 'distribution.csv'))
} else{
result <- c()
}
for(i in 1:length(outcomesIds)){
oi <- outcomesIds[i]
ind <- outcomes$outcomeId==oi & outcomes$daysToEvent >= 0
if(sum(ind)>0){
afterC <- stats::aggregate(x = outcomes$daysToEvent[ind],
by = list(outcomes$rowId[ind]),
FUN = min)
colnames(afterC) <- c('rowId','daysToOutcomeAfterMin')
} else {
afterC <- data.frame(rowId = -1, daysToOutcomeAfterMin = 0)
}
ind <- outcomes$outcomeId==oi & outcomes$daysToEvent < 0
if(sum(ind)>0){
beforeC <- stats::aggregate(x = abs(outcomes$daysToEvent[ind]),
by = list(outcomes$rowId[ind]),
FUN = min)
colnames(beforeC) <- c('rowId','daysToOutcomeBeforeMin')
} else {
beforeC <- data.frame(rowId = -1, daysToOutcomeBeforeMin = 0)
}
tempResult <- merge(cohort, afterC, by='rowId', all.x = T)
tempResult <- merge(tempResult, beforeC, by='rowId', all.x = T)
tempResult <- processDistribution(tempResult)
tempResult$databaseName <- databaseName
tempResult$outcomeId <- oi
tempResult$targetId <- cohortId
result <- unique(rbind(result, tempResult))
}
if(!is.null(outputFolder)){
utils::write.csv(result, file.path(outputFolder, 'distribution.csv'), row.names = F)
}
return(result)
}
processDistribution <- function(distribution){
distribution$year <- format(as.Date(as.character(distribution$cohortStartDate), format="%Y-%m-%d"),"%Y")
distribution <- distribution[, c('year','daysFromObsStart','daysToObsEnd','daysToOutcomeAfterMin','daysToOutcomeBeforeMin')]
results <- do.call(rbind, lapply(c('all',unique(distribution$year)), function(x) getQuantiles(distribution, x) ))
return(results)
}
getQuantiles <- function(distribution, year= 'all'){
if(year != 'all'){
distribution <- distribution[distribution$year==year,]
}
quants <- data.frame(
year = year,
daysFromObsStart = stats::quantile(distribution$daysFromObsStart, seq(0,1,0.01)),
daysToObsEnd = stats::quantile(distribution$daysToObsEnd, seq(0,1,0.01)),
daysToOutcomeAfterMin = stats::quantile(distribution$daysToOutcomeAfterMin[!is.na(distribution$daysToOutcomeAfterMin)], seq(0,1,0.01)),
daysToOutcomeBeforeMin = stats::quantile(distribution$daysToOutcomeBeforeMin[!is.na(distribution$daysToOutcomeBeforeMin)], seq(0,1,0.01))
)
heading <- data.frame(
year = year,
daysFromObsStart =length(distribution$daysFromObsStart),
daysToObsEnd = length(distribution$daysToObsEnd),
daysToOutcomeAfterMin = sum(!is.na(distribution$daysToOutcomeAfterMin)),
daysToOutcomeBeforeMin = sum(!is.na(distribution$daysToOutcomeBeforeMin))
)
results <- rbind(N = heading, quants)
results$type = rownames(results)
rownames(results) <- NULL
return(results)
}
getAnalysisId <- function(settings,
cohortId,
outcomeId,
riskWindowStart,
startAnchor,
riskWindowEnd,
endAnchor){
ind <- (settings$cohortId == cohortId) & (settings$outcomeId == outcomeId) &
(settings$riskWindowStart == riskWindowStart) & (settings$riskWindowEnd == riskWindowEnd) &
(settings$startAnchor == startAnchor) & (settings$endAnchor == endAnchor)
if(sum(ind)==0){
writeLines(paste('cohortId:',cohortId, '-outcomeId:',outcomeId,
'-riskWindowStart:', riskWindowStart, '-riskWindowEnd:', riskWindowEnd,
'-startAnchor:', startAnchor, '-endAnchor:',endAnchor))
print(settings)
stop('No analysis id found for the settings')
} else {
return(settings$analysisId[ind][1])
}
}
getProportions <- function(population,
analysisId,
cdmDatabaseName,
cohortId,
outcomeId,
minCellCount = NULL){
details <- attr(population, 'metaData')$populationSettings
TAR <- paste0(details$startAnchor, ' + ', details$riskWindowStart, ' days - ',
details$endAnchor, ' + ', details$riskWindowEnd, ' days')
result <- population %>% dplyr::mutate(ageGroup = paste0(floor(.data$ageYear/5)*5 ,' - ', (floor(.data$ageYear/5)+1)*5-1 ),
year = substring(.data$cohortStartDate,1,4)) %>%
dplyr::group_by(.data$year, .data$ageGroup, .data$gender) %>%
dplyr::summarize(N = length(.data$rowId),
O = sum(.data$outcomeCount>0)
) %>%
dplyr::select(.data$year, .data$ageGroup, .data$gender, .data$N, .data$O)
# add all years:
allYears <- result %>% dplyr::group_by(.data$ageGroup, .data$gender) %>%
dplyr::summarize(N = sum(.data$N),
O = sum(.data$O),
year = 'all'
) %>% dplyr::select(.data$year, .data$ageGroup, .data$gender, .data$N, .data$O)
# add all gender:
allGender <- result %>% dplyr::group_by(.data$year, .data$ageGroup) %>%
dplyr::summarize(N = sum(.data$N),
O = sum(.data$O),
gender = -1
) %>% dplyr::select(.data$year, .data$ageGroup, .data$gender, .data$N, .data$O)
# add all gender:
allAge <- result %>% dplyr::group_by(.data$year, .data$gender) %>%
dplyr::summarize(N = sum(.data$N),
O = sum(.data$O),
ageGroup = 'all'
) %>% dplyr::select(.data$year, .data$ageGroup, .data$gender, .data$N, .data$O)
result <- rbind(result, allYears, allGender, allAge)
result$opercent <- result$O/result$N*100
# censor
if(!is.null(minCellCount)){
result$opercent[result$O < minCellCount] <- -1
result$N[result$N<minCellCount] <- paste0('<', minCellCount)
result$O[result$O<minCellCount] <- paste0('<', minCellCount)
}
result$TAR <- TAR
result$analysisId <- analysisId
result$cdmDatabaseName <- cdmDatabaseName
result$cohortId <- cohortId
result$outcomeId <- outcomeId
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.