#' Conduct.KH_2N: function to conduct the KH_2N STAR test given two distinct species topologies (one or both are networks) and a set of input gene trees
#'
#' This function returns a list containing p-values of the KH_2N STAR test for two input species tree topologies
#' @param string.SpeciesNetwork1 String defining the first species topology (can be network or bifurcating)
#' @param string.SpeciesNetwork2 String defining the first species topology (can be network or bifurcating)
#' @param handle.GeneTrees Phylo object containing a list of the input gene trees
#' @param numeric.NumberOfReps Number of bootstrap replicates to analyze
#' @param string.PathDir String defining the path to a parent directory used for conduct KH_1 STAR test
#' @keywords Species tree, multispecies coalescent, phylogenetics, phylogenomics
#' @return List Returns a list containing (1) twosided pvalue, (2) upper p-values, (3) lower p-values, and (4) a vector of the bootstrapped test statistics delta
#' @export
#' @examples
#'
#'
#' ################
#' # Load depends #
#' ################
#' library(SpeciesTopoTestR)
#' library(ape)
#'
#' ####################################
#' # Generate example species network #
#' ####################################
#' string.SpeciesNetwork <- "(((((C:1.0,D:1.0):1)#H1:0::0.25,A:1.0):2,B:1.0):2,#H1:0::0.75);"
#' string.SpeciesNetwork_2 <- "((A:1,B:1):1,(C:1,D:1):1);"
#'
#'
#' ####################################################
#' # Simlate a set of gene trees for this species tree #
#' #####################################################
#' handle.SimulatedGeneTrees <- Simulate.GeneTrees_From_SpeciesNetwork(string.SpeciesNetwork = string.SpeciesNetwork,
#' string.PathDir = '~/Desktop/',
#' numeric.NumberOfGeneTrees = 5)
#'
#' Conduct.KH_2N(string.SpeciesNetwork1 = string.SpeciesNetwork,
#' string.SpeciesNetwork2 = string.SpeciesNetwork_2,
#' handle.InputGeneTrees = handle.SimulatedGeneTrees,
#' numeric.NumberOfReps = 3,
#' string.PathDir = '~/Desktop/')
#'
#################
# Conduct.KH_2N #
#################
Conduct.KH_2N <- function(string.SpeciesNetwork1, string.SpeciesNetwork2, handle.InputGeneTrees, numeric.NumberOfReps, string.PathDir){
###################
# Summarize input #
###################
numeric.NumberOfGeneTrees <- length(handle.InputGeneTrees)
#####################################################
# Define directory used for conduct KH_2N STAR test #
#####################################################
string.CurrentDir <- getwd()
string.Path_Directory_KH2N = paste(string.PathDir, '/Conduct.KH_2N_', Sys.Date(), sep = "")
unlink(string.Path_Directory_KH2N, recursive = T)
dir.create(string.Path_Directory_KH2N, showWarnings = T, recursive = T)
####################################################################################
# Define subdirectory used for comput likelihoods given optimized species network1 #
####################################################################################
string.Path_Directory_KH2_GeneTreeLikes_SpeciesNetwork1 = paste(string.Path_Directory_KH2N, '/GeneTreeLikes_Optimized_SpeciesNetwork_1', sep = "")
unlink(string.Path_Directory_KH2_GeneTreeLikes_SpeciesNetwork1, recursive = T)
dir.create(string.Path_Directory_KH2_GeneTreeLikes_SpeciesNetwork1, showWarnings = T, recursive = T)
####################################################################################
# Define subdirectory used for comput likelihoods given optimized species network2 #
####################################################################################
string.Path_Directory_KH2_GeneTreeLikes_SpeciesNetwork2 = paste(string.Path_Directory_KH2N, '/GeneTreeLikes_Optimized_SpeciesNetwork_2', sep = "")
unlink(string.Path_Directory_KH2_GeneTreeLikes_SpeciesNetwork2, recursive = T)
dir.create(string.Path_Directory_KH2_GeneTreeLikes_SpeciesNetwork2, showWarnings = T, recursive = T)
#########################################################
# Define subdirectory used for optimizing species tree1 #
#########################################################
string.Path_Directory_KH2_SpeciesNetwork1 = paste(string.Path_Directory_KH2N, '/Optimized_SpeciesNetwork_1', sep = "")
unlink(string.Path_Directory_KH2_SpeciesNetwork1, recursive = T)
dir.create(string.Path_Directory_KH2_SpeciesNetwork1, showWarnings = T, recursive = T)
######################################################################################
# Compute observed test statistic for the differences in LnLs for the two topologies #
######################################################################################
setwd(dir = string.Path_Directory_KH2_SpeciesNetwork1)
handle.Optimized_SpeciesNetwork1_OBSERVED <- Optimize.Network(string.SpeciesNetwork = string.SpeciesNetwork1,
handle.GeneTrees = handle.InputGeneTrees,
string.PathDir = string.Path_Directory_KH2_SpeciesNetwork1)
numeric.LnL_SpeciesNetwork1_OBSERVED <- handle.Optimized_SpeciesNetwork1_OBSERVED$numeric.MaximizedLnL
string.Optimized_Network_1 <- handle.Optimized_SpeciesNetwork1_OBSERVED$string.Optimized_SpeciesNetwork
#########################################################
# Define subdirectory used for optimizing species tree2 #
#########################################################
string.Path_Directory_KH2_SpeciesNetwork2 = paste(string.Path_Directory_KH2N, '/Optimized_SpeciesNetwork_2', sep = "")
unlink(string.Path_Directory_KH2_SpeciesNetwork2, recursive = T)
dir.create(string.Path_Directory_KH2_SpeciesNetwork2, showWarnings = T, recursive = T)
######################################################################################
# Compute observed test statistic for the differences in LnLs for the two topologies #
######################################################################################
setwd(dir = string.Path_Directory_KH2_SpeciesNetwork2)
handle.Optimized_SpeciesNetwork2_OBSERVED <- Optimize.Network(string.SpeciesNetwork = string.SpeciesNetwork2,
handle.GeneTrees = handle.InputGeneTrees,
string.PathDir = string.Path_Directory_KH2_SpeciesNetwork2)
numeric.LnL_SpeciesNetwork2_OBSERVED <- handle.Optimized_SpeciesNetwork2_OBSERVED$numeric.MaximizedLnL
string.Optimized_Network_2 <- handle.Optimized_SpeciesNetwork2_OBSERVED$string.Optimized_SpeciesNetwork
##################################
# Step 1: Compute observed delta #
##################################
numeric.Delta_Observed <- numeric.LnL_SpeciesNetwork1_OBSERVED - numeric.LnL_SpeciesNetwork2_OBSERVED
###########################################################################
# Step 2.1: Compute gene tree likelihoods for each optimized species tree #
###########################################################################
vector.GeneTree_Likelihoods_SpeciesNetwork1 <- Compute.GeneTree_Likelihoods_SpeciesNetwork(string.SpeciesNetwork = string.Optimized_Network_1,
handle.GeneTrees = handle.InputGeneTrees,
string.PathDir = string.Path_Directory_KH2_GeneTreeLikes_SpeciesNetwork1)
vector.GeneTree_Likelihoods_SpeciesNetwork2 <- Compute.GeneTree_Likelihoods_SpeciesNetwork(string.SpeciesNetwork = string.Optimized_Network_2,
handle.GeneTrees = handle.InputGeneTrees,
string.PathDir = string.Path_Directory_KH2_GeneTreeLikes_SpeciesNetwork2)
##########################
# Compute observed delta #
##########################
vector.ObservedDelta <- vector.GeneTree_Likelihoods_SpeciesNetwork1 - vector.GeneTree_Likelihoods_SpeciesNetwork2
###############################################################################
# Step 2.2: Conducting RELL bootstrap resampling of the gene tree likelihoods #
###############################################################################
vector.Delta_BootstrapReplicates_RELL <- rep(NA, numeric.NumberOfReps)
###########################
# Loop through replicates #
###########################
for (i in 1:numeric.NumberOfReps){
###############################
# Extract bootstrap replicate #
###############################
print(gsub("Conducting BS replicate XXX...", pattern = "XXX", replacement = i))
vector.DeltaBoostrapReplication_i <- sample(x = vector.ObservedDelta, size = numeric.NumberOfGeneTrees, replace = T)
vector.Delta_BootstrapReplicates_RELL[i] <- sum(vector.DeltaBoostrapReplication_i)
}
###############################################
# Step 3: Center the delta LnLs by their mean #
###############################################
vector.Delta_BootstrapReplicates <- vector.Delta_BootstrapReplicates_RELL[!is.na(vector.Delta_BootstrapReplicates_RELL)]
vector.Centered_Delta_BootstrapReplicates <- vector.Delta_BootstrapReplicates - mean(vector.Delta_BootstrapReplicates)
###############################
# Step 5: Compute signficance #
###############################
numeric.Upper_Pvalue <- length(vector.Centered_Delta_BootstrapReplicates[vector.Centered_Delta_BootstrapReplicates>=numeric.Delta_Observed])/length(vector.Centered_Delta_BootstrapReplicates)
numeric.Lower_Pvalue <- length(vector.Centered_Delta_BootstrapReplicates[vector.Centered_Delta_BootstrapReplicates<=numeric.Delta_Observed])/length(vector.Centered_Delta_BootstrapReplicates)
numeric.MinPvalue <- min(c(numeric.Upper_Pvalue, numeric.Lower_Pvalue))
numeric.TwoSided_Pvalue <- numeric.MinPvalue*2
##########################################
# Return to directory and return results #
##########################################
setwd(dir = string.CurrentDir)
return(list(TwoSided_Pvalue = numeric.TwoSided_Pvalue,
Upper_Pvalue = numeric.Upper_Pvalue,
Lower_Pvalue = numeric.Lower_Pvalue,
Observed_Delta = numeric.Delta_Observed,
BS_Delta = vector.Delta_BootstrapReplicates))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.