compute_taxa_milkType_association <- function(asfbf_fdrFile=fdrCI_lefse_phylum_level_6m_asfbf, tfbf_fdrFile = fdrCI_lefse_phylum_level_6m_tfbf, taxaFile = phylumTaxa)
{
dataSet <-thisDataInstance_all
dataSetInf1m <- dataSet[grepl("Inf.Bl",dataSet$X.SampleID),]
dataSetInf6m <- dataSet[grepl("Inf.6m",dataSet$X.SampleID),]
fdr_asfbf <- asfbf_fdrFile
fdr_tfbf <- tfbf_fdrFile
taxaTable <- taxaFile
taxaTable <- as.data.frame(taxaTable)
taxaTable$taxa <- gsub("\\| ",".",taxaTable$taxa)
row.names(taxaTable) <- taxaTable$taxa
taxaTable_6m<- taxaTable[,grepl("Inf.6m",colnames(taxaTable))]
myT <- t(taxaTable_6m)
myT2 <- (myT/(rowSums(myT)+1))*(sum(rowSums(myT))/nrow(myT))
myTLogged <- log10((myT2 +1))
myTLogged_6m<- myTLogged[,(colSums(myTLogged==0)/nrow(myTLogged)) <= 0.9]
taxaTable_1m <- taxaTable[,grepl("Inf.Bl",colnames(taxaTable))]
myT_1m <- t(taxaTable_1m)
myT2_1m <- ( myT_1m/(rowSums(myT_1m)+1))*(sum(rowSums(myT_1m))/nrow(myT_1m))
myTLogged_1m <- log10((myT2_1m +1))
taxaMeta_6m <- merge(dataSetInf6m,myTLogged_6m,by.x="X.SampleID",by.y="row.names")
taxaMeta_1m <- merge(dataSetInf1m,myTLogged_1m,by.x="X.SampleID",by.y="row.names")
exposureNamesList <- character(0);allOutcomes <- character(0);
meanBF_list <- numeric(0);meanTF_list <- numeric(0);meanASF_list <- numeric(0);
sdBF_list <- numeric(0);sdTF_list <- numeric(0);sdASF_list <- numeric(0);
diffTFBF_list <- numeric(0);diffASFBF_list <- numeric(0);
lwrTFBF_list <- numeric(0);lwrASFBF_list <- numeric(0);
uprTFBF_list <- numeric(0);uprASFBF_list <- numeric(0);
pValTFBF_list <- numeric(0);pValASFBF_list <- numeric(0);
tfbf_fdrci_list <- character(0);asfbf_fdrci_list <- character(0);
for(i in (length(dataSetInf6m)+1):(length(taxaMeta_6m)))
{
allOutcomes[[length(allOutcomes)+1]] <- names(taxaMeta_6m)[i];
modelForm=as.formula(paste("thisMicrobe","~milkConsumptionType+mother_age+prepreg_bmi_kgm2 +mode_of_delivery+mom_BMI+sex+ baby_age+inf_weight_kg+fruit_incj_Inf+thisMicrobe_1m" ));
thisDataInstance_6m <- na.omit(data.frame(dyad_id=taxaMeta_6m$dyad_id,
thisMicrobe=taxaMeta_6m[,i],
milkConsumptionType=taxaMeta_6m$milkConsumptionType,
mother_age=taxaMeta_6m$mother_age,
prepreg_bmi_kgm2=taxaMeta_6m$prepreg_bmi_kgm2,
mode_of_delivery=taxaMeta_6m$mode_of_delivery,
mom_BMI=taxaMeta_6m$mom_current_BMI,
sex=taxaMeta_6m$sex,
baby_age=taxaMeta_6m$baby_age,
inf_weight_kg=taxaMeta_6m$inf_weight_kg_1m6m,
fruit_incj_Inf=taxaMeta_6m$fruit_incj_Inf_1m6m))
thisDataInstance_1m <- na.omit(data.frame(dyad_id=taxaMeta_1m$dyad_id,
thisMicrobe_1m=taxaMeta_1m[,colnames(taxaMeta_1m) %in% names(taxaMeta_6m[i])]))
thisDataInstance_1m6m <- merge(thisDataInstance_6m,thisDataInstance_1m,by="dyad_id")
thisDataInstance_1m6m$milkConsumptionType <- factor(thisDataInstance_1m6m$milkConsumptionType)
modelInfo <- lm(modelForm, data = thisDataInstance_1m6m)
statModelAnova <- aov(modelInfo)
tukey <- suppressWarnings( TukeyHSD(statModelAnova,"milkConsumptionType"))
meanBF <- format(mean(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "BF",names(thisDataInstance_1m6m) %in% "thisMicrobe"]),digits=2)
meanBF_list[[length(meanBF_list)+1]] <- meanBF;
meanTF <- format(mean(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "TF",names(thisDataInstance_1m6m) %in% "thisMicrobe"]),digits=2)
meanTF_list[[length(meanTF_list)+1]] <- meanTF;
meanASF <- format(mean(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "ASF",names(thisDataInstance_1m6m) %in% "thisMicrobe"]),digits=2)
meanASF_list[[length(meanASF_list)+1]] <- meanASF;
sdBF <- format(sd(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "BF",names(thisDataInstance_1m6m) %in% "thisMicrobe"]),digits=2)
sdBF_list[[length(sdBF_list)+1]] <- sdBF;
sdTF <- format(sd(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "TF",names(thisDataInstance_1m6m) %in% "thisMicrobe"]),digits=2)
sdTF_list[[length(sdTF_list)+1]] <- sdTF;
sdASF <- format(sd(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "ASF",names(thisDataInstance_1m6m) %in% "thisMicrobe"]),digits=2)
sdASF_list[[length(sdASF_list)+1]] <- sdASF;
pValTFBF <- format.pval(tukey$milkConsumptionType[1,4],digits=2);
pValTFBF_list[[length(pValTFBF_list)+1]] <- pValTFBF;
# fdr_tfbf_value <- paste(format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][2],digits=2)," (",
# format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][3],digits=2),",",
# format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][4],digits=2),")",sep="")
# tfbf_fdrci_list[[length(tfbf_fdrci_list)+1]] <- fdr_tfbf_value;
pValASFBF <- format.pval(tukey$milkConsumptionType[2,4],digits=2);
pValASFBF_list[[length(pValASFBF_list)+1]] <- pValASFBF;
# fdr_asfbf_value <- paste(format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][2],digits=2)," (",
# format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][3],digits=2),",",
# format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][4],digits=2),")",sep="")
# asfbf_fdrci_list[[length(asfbf_fdrci_list)+1]] <- fdr_asfbf_value;
diffTFBF <- format(tukey$milkConsumptionType[1,1],digits=2);
diffTFBF_list[[length(diffTFBF_list)+1]] <- diffTFBF;
diffASFBF <- format(tukey$milkConsumptionType[2,1],digits=2);
diffASFBF_list[[length(diffASFBF_list)+1]] <- diffASFBF;
lwrTFBF <- format(tukey$milkConsumptionType[1,2],digits=2);
lwrTFBF_list[[length(lwrTFBF_list)+1]] <- lwrTFBF;
lwrASFBF <- format(tukey$milkConsumptionType[2,2],digits=2);
lwrASFBF_list[[length(lwrASFBF_list)+1]] <- lwrASFBF;
uprTFBF <- format(tukey$milkConsumptionType[1,3],digits=2);
uprTFBF_list[[length(uprTFBF_list)+1]] <- uprTFBF;
uprASFBF <- format(tukey$milkConsumptionType[2,3],digits=2);
uprASFBF_list[[length(uprASFBF_list)+1]] <- uprASFBF;
}
bfList <- paste(meanBF_list," (",sdBF_list,")",sep="")
tfList <- paste(meanTF_list," (",sdTF_list,")",sep="")
asfList <- paste(meanASF_list," (",sdASF_list,")",sep="")
difftfbfList <- paste(diffTFBF_list," (",lwrTFBF_list,", ",uprTFBF_list,")",sep="")
diffasfbfList <- paste(diffASFBF_list," (",lwrASFBF_list,", ",uprASFBF_list,")",sep="")
# allOutcomes <- cbind(allOutcomes,
# bfList,tfList,asfList,
# difftfbfList,pValTFBF_list,tfbf_fdrci_list,
# diffasfbfList,pValASFBF_list,asfbf_fdrci_list);
allOutcomes <- cbind(allOutcomes,
bfList,tfList,asfList,
difftfbfList,pValTFBF_list,
diffasfbfList,pValASFBF_list);
allOutcomes <- data.frame(allOutcomes)
return(allOutcomes)
}
compute_alphaDiversity_milkType_association <- function()
{
dataSet <-thisDataInstance_all
dataSetInf1m <- dataSet[grepl("Inf.Bl",dataSet$X.SampleID),]
dataSetInf6m <- dataSet[grepl("Inf.6m",dataSet$X.SampleID),]
fdr_asfbf <- alphaFDRCI_asfbf
fdr_tfbf <- alphaFDRCI_tfbf
taxaTable_6m<- alphaDiversityTable[grepl("Inf.6m",rownames(alphaDiversityTable)),]
taxaTable_1m <- alphaDiversityTable[grepl("Inf.Bl",rownames(alphaDiversityTable)),]
taxaMeta_6m <- merge(dataSetInf6m,taxaTable_6m,by.x="X.SampleID",by.y="row.names")
taxaMeta_1m <- merge(dataSetInf1m,taxaTable_1m,by.x="X.SampleID",by.y="row.names")
exposureNamesList <- character(0);allOutcomes <- character(0);
meanBF_list <- numeric(0);meanTF_list <- numeric(0);meanASF_list <- numeric(0);
sdBF_list <- numeric(0);sdTF_list <- numeric(0);sdASF_list <- numeric(0);
diffTFBF_list <- numeric(0);diffASFBF_list <- numeric(0);
lwrTFBF_list <- numeric(0);lwrASFBF_list <- numeric(0);
uprTFBF_list <- numeric(0);uprASFBF_list <- numeric(0);
pValTFBF_list <- numeric(0);pValASFBF_list <- numeric(0);
tfbf_fdrci_list <- character(0);asfbf_fdrci_list <- character(0);
for(i in (length(dataSetInf6m)+1):(length(taxaMeta_6m)))
{
allOutcomes[[length(allOutcomes)+1]] <- names(taxaMeta_6m)[i];
modelForm=as.formula(paste("thisMicrobe","~milkConsumptionType+mother_age+prepreg_bmi_kgm2 +mode_of_delivery+mom_BMI+sex+ baby_age+inf_weight_kg+fruit_incj_Inf+thisMicrobe_1m" ));
thisDataInstance_6m <- na.omit(data.frame(dyad_id=taxaMeta_6m$dyad_id,
thisMicrobe=taxaMeta_6m[,i],
milkConsumptionType=taxaMeta_6m$milkConsumptionType,
mother_age=taxaMeta_6m$mother_age,
prepreg_bmi_kgm2=taxaMeta_6m$prepreg_bmi_kgm2,
mode_of_delivery=taxaMeta_6m$mode_of_delivery,
mom_BMI=taxaMeta_6m$mom_current_BMI,
sex=taxaMeta_6m$sex,
baby_age=taxaMeta_6m$baby_age,
inf_weight_kg=taxaMeta_6m$inf_weight_kg_1m6m,
fruit_incj_Inf=taxaMeta_6m$fruit_incj_Inf_1m6m))
thisDataInstance_1m <- na.omit(data.frame(dyad_id=taxaMeta_1m$dyad_id,
thisMicrobe_1m=taxaMeta_1m[,colnames(taxaMeta_1m) %in% names(taxaMeta_6m[i])]))
thisDataInstance_1m6m <- merge(thisDataInstance_6m,thisDataInstance_1m,by="dyad_id")
thisDataInstance_1m6m$milkConsumptionType <- factor(thisDataInstance_1m6m$milkConsumptionType)
modelInfo <- lm(modelForm, data = thisDataInstance_1m6m)
statModelAnova <- aov(modelInfo)
tukey <- suppressWarnings( TukeyHSD(statModelAnova,"milkConsumptionType"))
meanBF <- format(mean(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "BF",names(thisDataInstance_1m6m) %in% "thisMicrobe"]),digits=2)
meanBF_list[[length(meanBF_list)+1]] <- meanBF;
meanTF <- format(mean(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "TF",names(thisDataInstance_1m6m) %in% "thisMicrobe"]),digits=2)
meanTF_list[[length(meanTF_list)+1]] <- meanTF;
meanASF <- format(mean(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "ASF",names(thisDataInstance_1m6m) %in% "thisMicrobe"]),digits=2)
meanASF_list[[length(meanASF_list)+1]] <- meanASF;
sdBF <- format(sd(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "BF",names(thisDataInstance_1m6m) %in% "thisMicrobe"]),digits=2)
sdBF_list[[length(sdBF_list)+1]] <- sdBF;
sdTF <- format(sd(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "TF",names(thisDataInstance_1m6m) %in% "thisMicrobe"]),digits=2)
sdTF_list[[length(sdTF_list)+1]] <- sdTF;
sdASF <- format(sd(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "ASF",names(thisDataInstance_1m6m) %in% "thisMicrobe"]),digits=2)
sdASF_list[[length(sdASF_list)+1]] <- sdASF;
pValTFBF <- format.pval(tukey$milkConsumptionType[1,4],digits=2);
pValTFBF_list[[length(pValTFBF_list)+1]] <- pValTFBF;
# fdr_tfbf_value <- paste(format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][2],digits=2)," (",
# format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][3],digits=2),",",
# format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][4],digits=2),")",sep="")
# tfbf_fdrci_list[[length(tfbf_fdrci_list)+1]] <- fdr_tfbf_value;
pValASFBF <- format.pval(tukey$milkConsumptionType[2,4],digits=2);
pValASFBF_list[[length(pValASFBF_list)+1]] <- pValASFBF;
# fdr_asfbf_value <- paste(format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][2],digits=2)," (",
# format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][3],digits=2),",",
# format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][4],digits=2),")",sep="")
# asfbf_fdrci_list[[length(asfbf_fdrci_list)+1]] <- fdr_asfbf_value;
diffTFBF <- format(tukey$milkConsumptionType[1,1],digits=2);
diffTFBF_list[[length(diffTFBF_list)+1]] <- diffTFBF;
diffASFBF <- format(tukey$milkConsumptionType[2,1],digits=2);
diffASFBF_list[[length(diffASFBF_list)+1]] <- diffASFBF;
lwrTFBF <- format(tukey$milkConsumptionType[1,2],digits=2);
lwrTFBF_list[[length(lwrTFBF_list)+1]] <- lwrTFBF;
lwrASFBF <- format(tukey$milkConsumptionType[2,2],digits=2);
lwrASFBF_list[[length(lwrASFBF_list)+1]] <- lwrASFBF;
uprTFBF <- format(tukey$milkConsumptionType[1,3],digits=2);
uprTFBF_list[[length(uprTFBF_list)+1]] <- uprTFBF;
uprASFBF <- format(tukey$milkConsumptionType[2,3],digits=2);
uprASFBF_list[[length(uprASFBF_list)+1]] <- uprASFBF;
}
bfList <- paste(meanBF_list," (",sdBF_list,")",sep="")
tfList <- paste(meanTF_list," (",sdTF_list,")",sep="")
asfList <- paste(meanASF_list," (",sdASF_list,")",sep="")
difftfbfList <- paste(diffTFBF_list," (",lwrTFBF_list,", ",uprTFBF_list,")",sep="")
diffasfbfList <- paste(diffASFBF_list," (",lwrASFBF_list,", ",uprASFBF_list,")",sep="")
# allOutcomes <- cbind(allOutcomes,
# bfList,tfList,asfList,
# difftfbfList,pValTFBF_list,tfbf_fdrci_list,
# diffasfbfList,pValASFBF_list,asfbf_fdrci_list);
allOutcomes <- cbind(allOutcomes,
bfList,tfList,asfList,
difftfbfList,pValTFBF_list,tfbf_fdrci_list,
diffasfbfList,pValASFBF_list);
allOutcomes <- data.frame(allOutcomes)
return(allOutcomes)
}
compute_betaDiversity_milkType_association <- function()
{
dataSet <-thisDataInstance_all
dataSetInf1m <- dataSet[grepl("Inf.Bl",dataSet$X.SampleID),]
dataSetInf6m <- dataSet[grepl("Inf.6m",dataSet$X.SampleID),]
fdr_asfbf <- betaFDRCI_asfbf
fdr_tfbf <- betaFDRCI_tfbf
loadings6m <- eigen6m
taxaMeta_1m <- merge(dataSetInf1m,ordinationData1m,by.x="X.SampleID",by.y="row.names")
taxaMeta_6m <- merge(dataSetInf6m,ordinationData6m,by.x="X.SampleID",by.y="row.names")
exposureNamesList <- character(0);allOutcomes <- character(0);
meanBF_list <- numeric(0);meanTF_list <- numeric(0);meanASF_list <- numeric(0);
sdBF_list <- numeric(0); sdTF_list <- numeric(0);sdASF_list <- numeric(0);
diffTFBF_list <- numeric(0);diffASFBF_list <- numeric(0);
lwrTFBF_list <- numeric(0);lwrASFBF_list <- numeric(0);
uprTFBF_list <- numeric(0);uprASFBF_list <- numeric(0);
pValTFBF_list <- numeric(0);pValASFBF_list <- numeric(0);
tfbf_fdrci_list <- character(0);asfbf_fdrci_list <- character(0);
for(i in (length(dataSetInf6m)+1):(length(taxaMeta_6m)))
{
allOutcomes[[length(allOutcomes)+1]] <- names(taxaMeta_6m)[i];
modelForm=as.formula(paste("thisAxis","~milkConsumptionType+mother_age+prepreg_bmi_kgm2 +mode_of_delivery+mom_BMI+sex+ baby_age+inf_weight_kg+fruit_incj_Inf+thisAxis_1m" ));
thisDataInstance_6m <- na.omit(data.frame(dyad_id=taxaMeta_6m$dyad_id,
thisAxis=taxaMeta_6m[,i],
milkConsumptionType=taxaMeta_6m$milkConsumptionType,
mother_age=taxaMeta_6m$mother_age,
prepreg_bmi_kgm2=taxaMeta_6m$prepreg_bmi_kgm2,
mode_of_delivery=taxaMeta_6m$mode_of_delivery,
mom_BMI=taxaMeta_6m$mom_current_BMI,
sex=taxaMeta_6m$sex,
baby_age=taxaMeta_6m$baby_age,
inf_weight_kg=taxaMeta_6m$inf_weight_kg_1m6m,
fruit_incj_Inf=taxaMeta_6m$fruit_incj_Inf_1m6m))
thisDataInstance_1m <- na.omit(data.frame(dyad_id=taxaMeta_1m$dyad_id,
thisAxis_1m=taxaMeta_1m[,colnames(taxaMeta_1m) %in% names(taxaMeta_6m[i])]))
thisDataInstance_1m6m <- merge(thisDataInstance_6m,thisDataInstance_1m,by="dyad_id")
thisDataInstance_1m6m$milkConsumptionType <- factor(thisDataInstance_1m6m$milkConsumptionType)
modelInfo <- lm(modelForm, data = thisDataInstance_1m6m)
statModelAnova <- aov(modelInfo)
tukey <- suppressWarnings( TukeyHSD(statModelAnova,"milkConsumptionType"))
meanBF <- format(mean(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "BF",names(thisDataInstance_1m6m) %in% "thisAxis"]),digits=2)
meanBF_list[[length(meanBF_list)+1]] <- meanBF;
meanTF <- format(mean(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "TF",names(thisDataInstance_1m6m) %in% "thisAxis"]),digits=2)
meanTF_list[[length(meanTF_list)+1]] <- meanTF;
meanASF <- format(mean(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "ASF",names(thisDataInstance_1m6m) %in% "thisAxis"]),digits=2)
meanASF_list[[length(meanASF_list)+1]] <- meanASF;
sdBF <- format(sd(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "BF",names(thisDataInstance_1m6m) %in% "thisAxis"]),digits=2)
sdBF_list[[length(sdBF_list)+1]] <- sdBF;
sdTF <- format(sd(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "TF",names(thisDataInstance_1m6m) %in% "thisAxis"]),digits=2)
sdTF_list[[length(sdTF_list)+1]] <- sdTF;
sdASF <- format(sd(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "ASF",names(thisDataInstance_1m6m) %in% "thisAxis"]),digits=2)
sdASF_list[[length(sdASF_list)+1]] <- sdASF;
pValTFBF <- format.pval(tukey$milkConsumptionType[1,4],digits=2);
pValTFBF_list[[length(pValTFBF_list)+1]] <- pValTFBF;
# fdr_tfbf_value <- paste(format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][2],digits=2)," (",
# format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][3],digits=2),",",
# format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][4],digits=2),")",sep="")
# tfbf_fdrci_list[[length(tfbf_fdrci_list)+1]] <- fdr_tfbf_value;
pValASFBF <- format.pval(tukey$milkConsumptionType[2,4],digits=2);
pValASFBF_list[[length(pValASFBF_list)+1]] <- pValASFBF;
# fdr_asfbf_value <- paste(format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][2],digits=2)," (",
# format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][3],digits=2),",",
# format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][4],digits=2),")",sep="")
# asfbf_fdrci_list[[length(asfbf_fdrci_list)+1]] <- fdr_asfbf_value;
diffTFBF <- format(tukey$milkConsumptionType[1,1],digits=2);
diffTFBF_list[[length(diffTFBF_list)+1]] <- diffTFBF;
diffASFBF <- format(tukey$milkConsumptionType[2,1],digits=2);
diffASFBF_list[[length(diffASFBF_list)+1]] <- diffASFBF;
lwrTFBF <- format(tukey$milkConsumptionType[1,2],digits=2);
lwrTFBF_list[[length(lwrTFBF_list)+1]] <- lwrTFBF;
lwrASFBF <- format(tukey$milkConsumptionType[2,2],digits=2);
lwrASFBF_list[[length(lwrASFBF_list)+1]] <- lwrASFBF;
uprTFBF <- format(tukey$milkConsumptionType[1,3],digits=2);
uprTFBF_list[[length(uprTFBF_list)+1]] <- uprTFBF;
uprASFBF <- format(tukey$milkConsumptionType[2,3],digits=2);
uprASFBF_list[[length(uprASFBF_list)+1]] <- uprASFBF;
}
bfList <- paste(meanBF_list," (",sdBF_list,")",sep="")
tfList <- paste(meanTF_list," (",sdTF_list,")",sep="")
asfList <- paste(meanASF_list," (",sdASF_list,")",sep="")
difftfbfList <- paste(diffTFBF_list," (",lwrTFBF_list,", ",uprTFBF_list,")",sep="")
diffasfbfList <- paste(diffASFBF_list," (",lwrASFBF_list,", ",uprASFBF_list,")",sep="")
# allOutcomes <- cbind(allOutcomes,
# bfList,tfList,asfList,
# difftfbfList,pValTFBF_list,tfbf_fdrci_list,
# diffasfbfList,pValASFBF_list,asfbf_fdrci_list);
allOutcomes <- cbind(allOutcomes,
bfList,tfList,asfList,
difftfbfList,pValTFBF_list,
diffasfbfList,pValASFBF_list);
allOutcomes <- data.frame(allOutcomes)
return(allOutcomes)
}
compute_keggModule_milkType_association <- function()
{
dataSet <-thisDataInstance_all
dataSetInf1m <- dataSet[grepl("Inf.Bl",dataSet$X.SampleID),]
dataSetInf6m <- dataSet[grepl("Inf.6m",dataSet$X.SampleID),]
fdr_asfbf <- keggModuleFDRCI_asfbf
fdr_tfbf <- keggModuleFDRCI_tfbf
moduleTable <- humann_modulec_picrust
moduleTable <- moduleTable[-c(1,2),]
colnames(moduleTable) <- substr(colnames(moduleTable),1,nchar(colnames(moduleTable))-10)
moduleTableBaby <- moduleTable[,grepl("Inf.6m",colnames(moduleTable))]
myT <- t(moduleTableBaby)
myTLogged_6m <- log10((myT/(rowSums(myT)+1))*(sum(rowSums(myT))/nrow(myT)) +1)
myTLogged_6m <- myTLogged_6m[,(colSums(myTLogged_6m==0)/nrow(myTLogged_6m)) <= 0.9]
moduleTableBaby_1m <- moduleTable[,grepl("Inf.Bl",colnames(moduleTable))]
myT_1m <- t(moduleTableBaby_1m)
myTLogged_1m<- log10((myT_1m/(rowSums(myT_1m)+1))*(sum(rowSums(myT_1m))/nrow(myT_1m)) +1)
moduleMeta_6m <- merge(dataSetInf6m,myTLogged_6m,by.x="X.SampleID",by.y="row.names")
moduleMeta_1m <- merge(dataSetInf1m,myTLogged_1m,by.x="X.SampleID",by.y="row.names")
exposureNamesList <- character(0);allOutcomes <- character(0);
meanBF_list <- numeric(0);meanTF_list <- numeric(0);meanASF_list <- numeric(0);
sdBF_list <- numeric(0);sdTF_list <- numeric(0);sdASF_list <- numeric(0);
diffTFBF_list <- numeric(0);diffASFBF_list <- numeric(0);
lwrTFBF_list <- numeric(0);lwrASFBF_list <- numeric(0);
uprTFBF_list <- numeric(0);uprASFBF_list <- numeric(0);
pValTFBF_list <- numeric(0);pValASFBF_list <- numeric(0);
tfbf_fdrci_list <- character(0);asfbf_fdrci_list <- character(0);
for(i in (length(dataSetInf6m)+1):(length(moduleMeta_6m)))
{
allOutcomes[[length(allOutcomes)+1]] <- names(moduleMeta_6m)[i];
modelForm=as.formula(paste("thisModule","~milkConsumptionType+mother_age+prepreg_bmi_kgm2 +mode_of_delivery+mom_BMI+sex+ baby_age+inf_weight_kg+fruit_incj_Inf+thisModule_1m" ));
thisDataInstance_6m <- na.omit(data.frame(dyad_id=moduleMeta_6m$dyad_id,
thisModule=moduleMeta_6m[,i],
milkConsumptionType=moduleMeta_6m$milkConsumptionType,
mother_age=moduleMeta_6m$mother_age,
prepreg_bmi_kgm2=moduleMeta_6m$prepreg_bmi_kgm2,
mode_of_delivery=moduleMeta_6m$mode_of_delivery,
mom_BMI=moduleMeta_6m$mom_current_BMI,
sex=moduleMeta_6m$sex,
baby_age=moduleMeta_6m$baby_age,
inf_weight_kg=moduleMeta_6m$inf_weight_kg_1m6m,
fruit_incj_Inf=moduleMeta_6m$fruit_incj_Inf_1m6m))
thisDataInstance_1m <- na.omit(data.frame(dyad_id=moduleMeta_1m$dyad_id,
thisModule_1m=moduleMeta_1m[,i]))
thisDataInstance_1m6m <- merge(thisDataInstance_6m,thisDataInstance_1m,by="dyad_id")
thisDataInstance_1m6m$milkConsumptionType <- factor(thisDataInstance_1m6m$milkConsumptionType)
modelInfo <- lm(modelForm, data = thisDataInstance_1m6m)
statModelAnova <- aov(modelInfo)
tukey <- suppressWarnings( TukeyHSD(statModelAnova,"milkConsumptionType"))
meanBF <- format(mean(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "BF",names(thisDataInstance_1m6m) %in% "thisModule"]),digits=2)
meanBF_list[[length(meanBF_list)+1]] <- meanBF;
meanTF <- format(mean(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "TF",names(thisDataInstance_1m6m) %in% "thisModule"]),digits=2)
meanTF_list[[length(meanTF_list)+1]] <- meanTF;
meanASF <- format(mean(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "ASF",names(thisDataInstance_1m6m) %in% "thisModule"]),digits=2)
meanASF_list[[length(meanASF_list)+1]] <- meanASF;
sdBF <- format(sd(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "BF",names(thisDataInstance_1m6m) %in% "thisModule"]),digits=2)
sdBF_list[[length(sdBF_list)+1]] <- sdBF;
sdTF <- format(sd(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "TF",names(thisDataInstance_1m6m) %in% "thisModule"]),digits=2)
sdTF_list[[length(sdTF_list)+1]] <- sdTF;
sdASF <- format(sd(thisDataInstance_1m6m[thisDataInstance_1m6m$milkConsumptionType %in% "ASF",names(thisDataInstance_1m6m) %in% "thisModule"]),digits=2)
sdASF_list[[length(sdASF_list)+1]] <- sdASF;
pValTFBF <- format.pval(tukey$milkConsumptionType[1,4],digits=2);
pValTFBF_list[[length(pValTFBF_list)+1]] <- pValTFBF;
# fdr_tfbf_value <- paste(format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][2],digits=2)," (",
# format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][3],digits=2),",",
# format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][4],digits=2),")",sep="")
# tfbf_fdrci_list[[length(tfbf_fdrci_list)+1]] <- fdr_tfbf_value;
pValASFBF <- format.pval(tukey$milkConsumptionType[2,4],digits=2);
pValASFBF_list[[length(pValASFBF_list)+1]] <- pValASFBF;
# fdr_asfbf_value <- paste(format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][2],digits=2)," (",
# format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][3],digits=2),",",
# format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][4],digits=2),")",sep="")
# asfbf_fdrci_list[[length(asfbf_fdrci_list)+1]] <- fdr_asfbf_value;
diffTFBF <- format(tukey$milkConsumptionType[1,1],digits=2);
diffTFBF_list[[length(diffTFBF_list)+1]] <- diffTFBF;
diffASFBF <- format(tukey$milkConsumptionType[2,1],digits=2);
diffASFBF_list[[length(diffASFBF_list)+1]] <- diffASFBF;
lwrTFBF <- format(tukey$milkConsumptionType[1,2],digits=2);
lwrTFBF_list[[length(lwrTFBF_list)+1]] <- lwrTFBF;
lwrASFBF <- format(tukey$milkConsumptionType[2,2],digits=2);
lwrASFBF_list[[length(lwrASFBF_list)+1]] <- lwrASFBF;
uprTFBF <- format(tukey$milkConsumptionType[1,3],digits=2);
uprTFBF_list[[length(uprTFBF_list)+1]] <- uprTFBF;
uprASFBF <- format(tukey$milkConsumptionType[2,3],digits=2);
uprASFBF_list[[length(uprASFBF_list)+1]] <- uprASFBF;
}
bfList <- paste(meanBF_list," (",sdBF_list,")",sep="")
tfList <- paste(meanTF_list," (",sdTF_list,")",sep="")
asfList <- paste(meanASF_list," (",sdASF_list,")",sep="")
difftfbfList <- paste(diffTFBF_list," (",lwrTFBF_list,", ",uprTFBF_list,")",sep="")
diffasfbfList <- paste(diffASFBF_list," (",lwrASFBF_list,", ",uprASFBF_list,")",sep="")
# allOutcomes <- cbind(allOutcomes,
# bfList,tfList,asfList,
# difftfbfList,pValTFBF_list,tfbf_fdrci_list,
# diffasfbfList,pValASFBF_list,asfbf_fdrci_list);
allOutcomes <- cbind(allOutcomes,
bfList,tfList,asfList,
difftfbfList,pValTFBF_list,
diffasfbfList,pValASFBF_list);
allOutcomes <- data.frame(allOutcomes)
return(allOutcomes)
}
compute_possibleCovariates_milkType <- function()
{
dataSet <-thisDataInstance_all
dataSetInf6m <- dataSet[grepl("Inf.6m",dataSet$X.SampleID),]
fdr_sugar <- potentialCovariates
potentialCovariates <- c("sex","baby_age","inf_weight_kg_1m6m","inf_length_cm_6m","zbmi_6m","zwfl_6m","zwei_6m","zlen_6m","skinf_tricep_mm_6m",
"skinf_subscap_mm_6m","skinf_supra_mm_6m","skinf_midthigh_mm_6m","circ_umb_cm_6m","mother_age","mom_current_BMI","prepreg_bmi_kgm2",
"mode_of_delivery","begun_solid_food","m_ener_Inf_6m","fruit_incj_Inf_1m6m","PAS","NEG","ORC")
exposureNamesList <- character(0);allOutcomes <- character(0);
meanBF_list <- numeric(0);meanTF_list <- numeric(0);meanASF_list <- numeric(0);
sdBF_list <- numeric(0);sdTF_list <- numeric(0);sdASF_list <- numeric(0);
sugar_fdrci_list <- numeric(0); pValSugarList <- numeric(0);
i <- 1
for( variable in potentialCovariates)
{
allOutcomes[[length(allOutcomes)+1]] <- variable;
categorical <- ifelse(variable %in% c("sex","mode_of_delivery","begun_solid_food"),TRUE,FALSE)
thisDataInstance <- na.omit(data.frame(variable=dataSetInf6m[,names(dataSetInf6m) %in% variable],
milkConsumptionType=dataSetInf6m$milkConsumptionType))
modelForm=as.formula(paste("variable~milkConsumptionType" ));
modelInfo <- lm(modelForm, data = thisDataInstance)
statModelAnova <- aov(modelInfo)
tukey <- suppressWarnings( TukeyHSD(statModelAnova,"milkConsumptionType"))
meanBF <- format(mean(thisDataInstance[thisDataInstance$milkConsumptionType %in% "BF",names(thisDataInstance) %in% "variable"]),digits=2)
meanBF_list[[length(meanBF_list)+1]] <- meanBF;
meanTF <- format(mean(thisDataInstance[thisDataInstance$milkConsumptionType %in% "TF",names(thisDataInstance) %in% "variable"]),digits=2)
meanTF_list[[length(meanTF_list)+1]] <- meanTF;
meanASF <- format(mean(thisDataInstance[thisDataInstance$milkConsumptionType %in% "ASF",names(thisDataInstance) %in% "variable"]),digits=2)
meanASF_list[[length(meanASF_list)+1]] <- meanASF;
sdBF <- format(sd(thisDataInstance[thisDataInstance$milkConsumptionType %in% "BF",names(thisDataInstance) %in% "variable"]),digits=2)
sdBF_list[[length(sdBF_list)+1]] <- sdBF;
sdTF <- format(sd(thisDataInstance[thisDataInstance$milkConsumptionType %in% "TF",names(thisDataInstance) %in% "variable"]),digits=2)
sdTF_list[[length(sdTF_list)+1]] <- sdTF;
sdASF <- format(sd(thisDataInstance[thisDataInstance$milkConsumptionType %in% "ASF",names(thisDataInstance) %in% "variable"]),digits=2)
sdASF_list[[length(sdASF_list)+1]] <- sdASF;
if(categorical %in% TRUE)
{
pval=suppressWarnings(chisq.test(as.table(rbind(thisDataInstance$milkConsumptionType,thisDataInstance[,names(thisDataInstance) %in% "variable"])))$p.value)
}
if(categorical %in% FALSE)
{
modelInfo <- lm(modelForm, data = thisDataInstance)
pval <- anova(modelInfo)$"Pr(>F)"[1];
}
pValSugar <- format.pval(pval,digits=3);
pValSugarList[[length(pValSugarList)+1]] <- pValSugar;
# fdr_sugar_value <- paste(format.pval(fdr_sugar[fdr_sugar$threshold %in% (floor(-log10(anova(modelInfo)$"Pr(>F)"[1])*10^1)/10^1),][2],digits=2)," (",
# format.pval(fdr_sugar[fdr_sugar$threshold %in% (floor(-log10(anova(modelInfo)$"Pr(>F)"[1])*10^1)/10^1),][3],digits=2),",",
# format.pval(fdr_sugar[fdr_sugar$threshold %in% (floor(-log10(anova(modelInfo)$"Pr(>F)"[1])*10^1)/10^1),][4],digits=2),")",sep="")
#
# sugar_fdrci_list[[length(sugar_fdrci_list)+1]] <- fdr_sugar_value;
}
bfList <- paste(meanBF_list," (",sdBF_list,")",sep="")
tfList <- paste(meanTF_list," (",sdTF_list,")",sep="")
asfList <- paste(meanASF_list," (",sdASF_list,")",sep="")
# allOutcomes <- cbind(allOutcomes,
# bfList,tfList,asfList,pValSugarList,sugar_fdrci_list);
allOutcomes <- cbind(allOutcomes,
bfList,tfList,asfList,pValSugarList);
allOutcomes <- data.frame(allOutcomes)
return(allOutcomes)
}
compute_bayley_milkType_association <- function()
{
dataSet <-thisDataInstance_all
dataSetInf6m <- dataSet[grepl("Inf.6m",dataSet$X.SampleID),]
bayleysVariables <- c("bsid_cog_ss","bsid_lang_rc_ss",
"bsid_lang_ec_ss","bsid_lang_ss","bsid_mot_fm_ss","bsid_mot_gm_ss",
"bsid_mot_ss","bsid_se_ss","bsid_ab_com_ss","bsid_ab_cu_ss",
"bsid_ab_fa_ss","bsid_ab_hl_ss","bsid_ab_hs_ss","bsid_ab_ls_ss","bsid_ab_sc_ss","bsid_ab_sd_ss","bsid_ab_soc_ss",
"bsid_ab_mo_ss","bsid_ab_ss")
bayleysNames <- c("Cognitive Scaled Score","Receptive Communication (RC) Total Scaled Score",
"Expressive Communication (EC) Total Scaled Score","Language Sum Scaled Score","Fine Motor (FM) Scaled Score","Gross Motor (GM) Scaled Score",
"Motor Sum Scaled Score","Social-Emotional Scaled Score","Communication (Com) Scaled Score","Community Use (CU) Scaled Score",
"Functional Pre-Academics (FA) Scaled Score","Home Living (HL) Scaled Score","Health and Safety (HS) Scaled Score","Leisure (LS) Scaled Score",
"Self-Care (SC) Scaled Score","Self-Direction (SD) Scaled Score","Social (Soc) Scaled Score",
"Motor (MO) Scaled Score","Adaptive Behavior Sum Scaled Score")
fdr_asfbf <- bayleysFDRCI_asfbf
fdr_tfbf <- bayleysFDRCI_tfbf
exposureNamesList <- character(0);allOutcomes <- character(0);
meanBF_list <- numeric(0);meanTF_list <- numeric(0);meanASF_list <- numeric(0);
sdBF_list <- numeric(0);sdTF_list <- numeric(0);sdASF_list <- numeric(0);
diffTFBF_list <- numeric(0);diffASFBF_list <- numeric(0);
lwrTFBF_list <- numeric(0);lwrASFBF_list <- numeric(0);
uprTFBF_list <- numeric(0);uprASFBF_list <- numeric(0);
pValTFBF_list <- numeric(0);pValASFBF_list <- numeric(0);
tfbf_fdrci_list <- character(0);asfbf_fdrci_list <- character(0);
i <- 1
for( variable in bayleysVariables)
{
allOutcomes[[length(allOutcomes)+1]] <- variable;
thisDataInstance <- na.omit(data.frame(dyad_id=dataSetInf6m$dyad_id,
thisMeasure=as.numeric(as.character(dataSetInf6m[,names(dataSetInf6m) %in% variable])),
milkConsumptionType=dataSetInf6m$milkConsumptionType,
prepreg_bmi_kgm2=dataSetInf6m$prepreg_bmi_kgm2,
sex=factor(dataSetInf6m$sex),
fruit_incj_Inf=dataSetInf6m$fruit_incj_Inf_24,
inf_weight_kg=dataSetInf6m$inf_weight_kg))
modelForm=as.formula(paste("thisMeasure","~milkConsumptionType+prepreg_bmi_kgm2 +sex+inf_weight_kg+fruit_incj_Inf" ));
modelInfo <- lm(modelForm, data = thisDataInstance)
statModelAnova <- aov(modelInfo)
tukey <- suppressWarnings( TukeyHSD(statModelAnova,"milkConsumptionType"))
meanBF <- format(mean(thisDataInstance[thisDataInstance$milkConsumptionType %in% "BF",names(thisDataInstance) %in% "thisMeasure"]),digits=2)
meanBF_list[[length(meanBF_list)+1]] <- meanBF;
meanTF <- format(mean(thisDataInstance[thisDataInstance$milkConsumptionType %in% "TF",names(thisDataInstance) %in% "thisMeasure"]),digits=2)
meanTF_list[[length(meanTF_list)+1]] <- meanTF;
meanASF <- format(mean(thisDataInstance[thisDataInstance$milkConsumptionType %in% "ASF",names(thisDataInstance) %in% "thisMeasure"]),digits=2)
meanASF_list[[length(meanASF_list)+1]] <- meanASF;
sdBF <- format(sd(thisDataInstance[thisDataInstance$milkConsumptionType %in% "BF",names(thisDataInstance) %in% "thisMeasure"]),digits=2)
sdBF_list[[length(sdBF_list)+1]] <- sdBF;
sdTF <- format(sd(thisDataInstance[thisDataInstance$milkConsumptionType %in% "TF",names(thisDataInstance) %in% "thisMeasure"]),digits=2)
sdTF_list[[length(sdTF_list)+1]] <- sdTF;
sdASF <- format(sd(thisDataInstance[thisDataInstance$milkConsumptionType %in% "ASF",names(thisDataInstance) %in% "thisMeasure"]),digits=2)
sdASF_list[[length(sdASF_list)+1]] <- sdASF;
pValTFBF <- format.pval(tukey$milkConsumptionType[1,4],digits=2);
pValTFBF_list[[length(pValTFBF_list)+1]] <- pValTFBF;
# fdr_tfbf_value <- paste(format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][2],digits=2)," (",
# format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][3],digits=2),",",
# format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][4],digits=2),")",sep="")
# tfbf_fdrci_list[[length(tfbf_fdrci_list)+1]] <- fdr_tfbf_value;
pValASFBF <- format.pval(tukey$milkConsumptionType[2,4],digits=2);
pValASFBF_list[[length(pValASFBF_list)+1]] <- pValASFBF;
# fdr_asfbf_value <- paste(format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][2],digits=2)," (",
# format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][3],digits=2),",",
# format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][4],digits=2),")",sep="")
# asfbf_fdrci_list[[length(asfbf_fdrci_list)+1]] <- fdr_asfbf_value;
diffTFBF <- format(tukey$milkConsumptionType[1,1],digits=2);
diffTFBF_list[[length(diffTFBF_list)+1]] <- diffTFBF;
diffASFBF <- format(tukey$milkConsumptionType[2,1],digits=2);
diffASFBF_list[[length(diffASFBF_list)+1]] <- diffASFBF;
lwrTFBF <- format(tukey$milkConsumptionType[1,2],digits=2);
lwrTFBF_list[[length(lwrTFBF_list)+1]] <- lwrTFBF;
lwrASFBF <- format(tukey$milkConsumptionType[2,2],digits=2);
lwrASFBF_list[[length(lwrASFBF_list)+1]] <- lwrASFBF;
uprTFBF <- format(tukey$milkConsumptionType[1,3],digits=2);
uprTFBF_list[[length(uprTFBF_list)+1]] <- uprTFBF;
uprASFBF <- format(tukey$milkConsumptionType[2,3],digits=2);
uprASFBF_list[[length(uprASFBF_list)+1]] <- uprASFBF;
i <- i+1;
}
bfList <- paste(meanBF_list," (",sdBF_list,")",sep="")
tfList <- paste(meanTF_list," (",sdTF_list,")",sep="")
asfList <- paste(meanASF_list," (",sdASF_list,")",sep="")
difftfbfList <- paste(diffTFBF_list," (",lwrTFBF_list,", ",uprTFBF_list,")",sep="")
diffasfbfList <- paste(diffASFBF_list," (",lwrASFBF_list,", ",uprASFBF_list,")",sep="")
# allOutcomes <- cbind(allOutcomes,
# bfList,tfList,asfList,
# difftfbfList,pValTFBF_list,tfbf_fdrci_list,
# diffasfbfList,pValASFBF_list,asfbf_fdrci_list);
allOutcomes <- cbind(allOutcomes,
bfList,tfList,asfList,
difftfbfList,pValTFBF_list,
diffasfbfList,pValASFBF_list);
allOutcomes <- data.frame(allOutcomes)
return(allOutcomes)
}
compute_somaticGrowth_milkType_association <- function( )
{
dataSet <-thisDataInstance_all
dataSetInf6m <- dataSet[grepl("Inf.6m",dataSet$X.SampleID),]
somaticVariables <- c("inf_weight_kg","zbmi","zwfl","zwei","zlen","skinf_tricep_mm","skinf_subscap_mm",
"skinf_supra_mm","skinf_midthigh_mm","circ_umb_cm")
somaticNames <- c("Infant Weight","BMI Z-score","Weight-for-Length Z-score","Weight Z-score","Length Z-score","Tricep Skinfold (mm)","Subscapular Skinfold (mm)",
"Suprailiac Skinfold (mm)","Midthigh Skinfold (mm)","Abdominal Circumference (cm)")
fdr_asfbf <- anthroFDRCI_asfbf
fdr_tfbf <- anthroFDRCI_tfbf
exposureNamesList <- character(0);allOutcomes <- character(0);
meanBF_list <- numeric(0);meanTF_list <- numeric(0);meanASF_list <- numeric(0);
sdBF_list <- numeric(0);sdTF_list <- numeric(0);sdASF_list <- numeric(0);
diffTFBF_list <- numeric(0);diffASFBF_list <- numeric(0);
lwrTFBF_list <- numeric(0);lwrASFBF_list <- numeric(0);
uprTFBF_list <- numeric(0);uprASFBF_list <- numeric(0);
pValTFBF_list <- numeric(0);pValASFBF_list <- numeric(0);
tfbf_fdrci_list <- character(0);asfbf_fdrci_list <- character(0);
i <- 1
for( variable in somaticVariables)
{
allOutcomes[[length(allOutcomes)+1]] <- variable;
thisDataInstance <- na.omit(data.frame(dyad_id=dataSetInf6m$dyad_id,
thisMeasure=as.numeric(as.character(dataSetInf6m[,names(dataSetInf6m) %in% variable])),
milkConsumptionType=dataSetInf6m$milkConsumptionType,
prepreg_bmi_kgm2=dataSetInf6m$prepreg_bmi_kgm2,
sex=factor(dataSetInf6m$sex),
fruit_incj_Inf=dataSetInf6m$fruit_incj_Inf_24))
modelForm=as.formula(paste("thisMeasure","~milkConsumptionType+prepreg_bmi_kgm2 +sex+fruit_incj_Inf" ));
modelInfo <- lm(modelForm, data = thisDataInstance)
statModelAnova <- aov(modelInfo)
tukey <- suppressWarnings( TukeyHSD(statModelAnova,"milkConsumptionType"))
meanBF <- format(mean(thisDataInstance[thisDataInstance$milkConsumptionType %in% "BF",names(thisDataInstance) %in% "thisMeasure"]),digits=2)
meanBF_list[[length(meanBF_list)+1]] <- meanBF;
meanTF <- format(mean(thisDataInstance[thisDataInstance$milkConsumptionType %in% "TF",names(thisDataInstance) %in% "thisMeasure"]),digits=2)
meanTF_list[[length(meanTF_list)+1]] <- meanTF;
meanASF <- format(mean(thisDataInstance[thisDataInstance$milkConsumptionType %in% "ASF",names(thisDataInstance) %in% "thisMeasure"]),digits=2)
meanASF_list[[length(meanASF_list)+1]] <- meanASF;
sdBF <- format(sd(thisDataInstance[thisDataInstance$milkConsumptionType %in% "BF",names(thisDataInstance) %in% "thisMeasure"]),digits=2)
sdBF_list[[length(sdBF_list)+1]] <- sdBF;
sdTF <- format(sd(thisDataInstance[thisDataInstance$milkConsumptionType %in% "TF",names(thisDataInstance) %in% "thisMeasure"]),digits=2)
sdTF_list[[length(sdTF_list)+1]] <- sdTF;
sdASF <- format(sd(thisDataInstance[thisDataInstance$milkConsumptionType %in% "ASF",names(thisDataInstance) %in% "thisMeasure"]),digits=2)
sdASF_list[[length(sdASF_list)+1]] <- sdASF;
pValTFBF <- format.pval(tukey$milkConsumptionType[1,4],digits=2);
pValTFBF_list[[length(pValTFBF_list)+1]] <- pValTFBF;
# fdr_tfbf_value <- paste(format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][2],digits=2)," (",
# format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][3],digits=2),",",
# format.pval(fdr_tfbf[fdr_tfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[1,4])*10^3)/10^3),][4],digits=2),")",sep="")
# tfbf_fdrci_list[[length(tfbf_fdrci_list)+1]] <- fdr_tfbf_value;
pValASFBF <- format.pval(tukey$milkConsumptionType[2,4],digits=2);
pValASFBF_list[[length(pValASFBF_list)+1]] <- pValASFBF;
# fdr_asfbf_value <- paste(format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][2],digits=2)," (",
# format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][3],digits=2),",",
# format.pval(fdr_asfbf[fdr_asfbf$threshold %in% (floor(-log10(tukey$milkConsumptionType[2,4])*10^3)/10^3),][4],digits=2),")",sep="")
# asfbf_fdrci_list[[length(asfbf_fdrci_list)+1]] <- fdr_asfbf_value;
diffTFBF <- format(tukey$milkConsumptionType[1,1],digits=2);
diffTFBF_list[[length(diffTFBF_list)+1]] <- diffTFBF;
diffASFBF <- format(tukey$milkConsumptionType[2,1],digits=2);
diffASFBF_list[[length(diffASFBF_list)+1]] <- diffASFBF;
lwrTFBF <- format(tukey$milkConsumptionType[1,2],digits=2);
lwrTFBF_list[[length(lwrTFBF_list)+1]] <- lwrTFBF;
lwrASFBF <- format(tukey$milkConsumptionType[2,2],digits=2);
lwrASFBF_list[[length(lwrASFBF_list)+1]] <- lwrASFBF;
uprTFBF <- format(tukey$milkConsumptionType[1,3],digits=2);
uprTFBF_list[[length(uprTFBF_list)+1]] <- uprTFBF;
uprASFBF <- format(tukey$milkConsumptionType[2,3],digits=2);
uprASFBF_list[[length(uprASFBF_list)+1]] <- uprASFBF;
i <- i+1;
}
bfList <- paste(meanBF_list," (",sdBF_list,")",sep="")
tfList <- paste(meanTF_list," (",sdTF_list,")",sep="")
asfList <- paste(meanASF_list," (",sdASF_list,")",sep="")
difftfbfList <- paste(diffTFBF_list," (",lwrTFBF_list,", ",uprTFBF_list,")",sep="")
diffasfbfList <- paste(diffASFBF_list," (",lwrASFBF_list,", ",uprASFBF_list,")",sep="")
# allOutcomes <- cbind(allOutcomes,
# bfList,tfList,asfList,
# difftfbfList,pValTFBF_list,tfbf_fdrci_list,
# diffasfbfList,pValASFBF_list,asfbf_fdrci_list);
allOutcomes <- cbind(allOutcomes,
bfList,tfList,asfList,
difftfbfList,pValTFBF_list,
diffasfbfList,pValASFBF_list);
allOutcomes <- data.frame(allOutcomes)
return(allOutcomes)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.