library(DCFusion)
library(HMCGLMR)
##### Initialise example #####
seed <- 2022
set.seed(seed)
nsamples <- 10000
warmup <- 10000
time_choice <- 1
phi_rate <- 1
prior_means <- rep(0, 10)
prior_variances <- rep(10, 10)
ESS_threshold <- 0.5
CESS_0_threshold <- 0.2
CESS_j_threshold <- 0.05
diffusion_estimator <- 'NB'
n_cores <- parallel::detectCores()
##### Loading in Data #####
load_medical_demand_data <- function(seed = NULL) {
load('scripts/count_data_regression/medical_demand/DebTrivedi.rda')
med_demand <- data.frame(visits = DebTrivedi$ofp,
hosp_stays = DebTrivedi$hosp,
exc_health = as.numeric(DebTrivedi$health == "excellent"),
avg_health = as.numeric(DebTrivedi$health == "average"),
n_chron = DebTrivedi$numchron,
age = DebTrivedi$age,
black = as.numeric(DebTrivedi$black == "yes"),
gender = as.numeric(DebTrivedi$gender == "male"),
employed = as.numeric(DebTrivedi$employed == "yes"),
priv_ins = as.numeric(DebTrivedi$privins == "yes"))
med_demand <- med_demand[complete.cases(med_demand),]
if (!is.null(seed)) {
set.seed(seed)
med_demand <- med_demand[sample(1:nrow(med_demand)),]
}
X <- subset(med_demand, select = -c(visits))
design_mat <- as.matrix(cbind(rep(1, nrow(X)), X))
colnames(design_mat)[1] <- 'intercept'
return(list('data' = cbind(subset(design_mat, select = -c(intercept)),
'visits' = med_demand$visits),
'y' = med_demand$visits,
'X' = design_mat))
}
med_demand <- load_medical_demand_data()
##### Sampling from full posterior #####
full_posterior <- hmc_sample_GLMR(likelihood = 'NB',
y = med_demand$y,
X = med_demand$X,
C = 1,
phi = 1,
prior_means = prior_means,
prior_variances = prior_variances,
iterations = nsamples + 10000,
warmup = 10000,
chains = 1,
seed = seed,
output = T)
##### Sampling from sub-posterior C=16 #####
data_split_16 <- split_data(med_demand$data,
y_col_index = 10,
X_col_index = 1:9,
C = 16,
as_dataframe = F)
sub_posteriors_16 <- hmc_base_sampler_GLMR(likelihood = 'NB',
nsamples = nsamples,
warmup = 10000,
data_split = data_split_16,
C = 16,
phi = 1,
prior_means = prior_means,
prior_variances = prior_variances,
seed = seed,
output = T)
##### Applying other methodologies #####
print('Applying other methodologies')
consensus_mat_16 <- consensus_scott(S = 16, samples_to_combine = sub_posteriors_16, indep = F)
consensus_sca_16 <- consensus_scott(S = 16, samples_to_combine = sub_posteriors_16, indep = T)
neiswanger_true_16 <- neiswanger(S = 16,
samples_to_combine = sub_posteriors_16,
anneal = TRUE)
neiswanger_false_16 <- neiswanger(S = 16,
samples_to_combine = sub_posteriors_16,
anneal = FALSE)
weierstrass_importance_16 <- weierstrass(Samples = sub_posteriors_16,
method = 'importance')
weierstrass_rejection_16 <- weierstrass(Samples = sub_posteriors_16,
method = 'reject')
# ##### Generalised Bayesian Fusion #####
##### bal binary combining two sub-posteriors at a time #####
balanced_C16 <- list('reg' = bal_binary_GBF_BNBR(N_schedule = rep(nsamples, 4),
m_schedule = rep(2, 4),
time_mesh = NULL,
base_samples = sub_posteriors_16,
L = 5,
dim = 10,
phi_rate = phi_rate,
data_split = data_split_16,
prior_means = prior_means,
prior_variances = prior_variances,
C = 16,
precondition = TRUE,
resampling_method = 'resid',
ESS_threshold = ESS_threshold,
adaptive_mesh = FALSE,
mesh_parameters = list('condition' = 'SH',
'CESS_0_threshold' = CESS_0_threshold,
'CESS_j_threshold' = CESS_j_threshold,
'vanilla' = FALSE),
diffusion_estimator = diffusion_estimator,
seed = seed))
balanced_C16$adaptive <- bal_binary_GBF_BNBR(N_schedule = rep(nsamples, 4),
m_schedule = rep(2, 4),
time_mesh = NULL,
base_samples = sub_posteriors_16,
L = 5,
dim = 10,
phi_rate = phi_rate,
data_split = data_split_16,
prior_means = prior_means,
prior_variances = prior_variances,
C = 16,
precondition = TRUE,
resampling_method = 'resid',
ESS_threshold = ESS_threshold,
adaptive_mesh = TRUE,
mesh_parameters = list('condition' = 'SH',
'CESS_0_threshold' = CESS_0_threshold,
'CESS_j_threshold' = CESS_j_threshold,
'vanilla' = FALSE),
diffusion_estimator = diffusion_estimator,
seed = seed)
# regular mesh
balanced_C16$reg$particles <- resample_particle_y_samples(particle_set = balanced_C16$reg$particles[[1]],
multivariate = TRUE,
resampling_method = 'resid',
seed = seed)
balanced_C16$reg$proposed_samples <- balanced_C16$reg$proposed_samples[[1]]
print(integrated_abs_distance(full_posterior, balanced_C16$reg$particles$y_samples))
# adaptive mesh
balanced_C16$adaptive$particles <- resample_particle_y_samples(particle_set = balanced_C16$adaptive$particles[[1]],
multivariate = TRUE,
resampling_method = 'resid',
seed = seed)
balanced_C16$adaptive$proposed_samples <- balanced_C16$adaptive$proposed_samples[[1]]
print(integrated_abs_distance(full_posterior, balanced_C16$adaptive$particles$y_samples))
##### IAD #####
integrated_abs_distance(full_posterior, balanced_C16$reg$particles$y_samples)
integrated_abs_distance(full_posterior, balanced_C16$adaptive$particles$y_samples)
integrated_abs_distance(full_posterior, consensus_mat_16$samples)
integrated_abs_distance(full_posterior, consensus_sca_16$samples)
integrated_abs_distance(full_posterior, neiswanger_true_16$samples)
integrated_abs_distance(full_posterior, neiswanger_false_16$samples)
integrated_abs_distance(full_posterior, weierstrass_importance_16$samples)
integrated_abs_distance(full_posterior, weierstrass_rejection_16$samples)
save.image('DB16.RData')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.