library(DCFusion)
library(MASS)
seed <- 1983
set.seed(seed)
nsamples <- 10000
fusion_time <- 1
mean <- c(1, 2)
sd <- c(sqrt(0.5), sqrt(2))
cov_mat <- matrix(c(sd[1]^2, 0.9, 0.9, sd[2]^2), nrow = 2, ncol = 2, byrow = T)
corr <- 0.9/(sd[1]*sd[2])
C <- 4
beta <- 1/C
diffusion_estimator <- 'NB'
# sampling from the sub-posteriors (target at inverse temperature 1/4)
input_samples <- lapply(1:C, function(i) mvrnormArma_tempered(1000000,
mu = mean,
Sigma = cov_mat,
beta = beta))
# sample from true target density
true_samples <- mvrnormArma(1000000, mu = mean, Sigma = cov_mat)
true_kde <- MASS::kde2d(true_samples[,1], true_samples[,2], n = 50)
image(true_kde)
contour(true_kde, add = T)
##### Monte Carlo Fusion #####
input_particles_MCF <- initialise_particle_sets(samples_to_fuse = input_samples,
multivariate = TRUE)
print('### performing standard fusion')
MCF_standard <- parallel_fusion_SMC_biGaussian(particles_to_fuse = input_particles_MCF,
N = nsamples,
m = C,
time = fusion_time,
mean_vec = mean,
sd_vec = sd,
corr = corr,
betas = rep(beta, C),
precondition_matrices = rep(list(diag(1,2)), C),
ESS_threshold = 0.5,
diffusion_estimator = diffusion_estimator,
seed = seed)
print('ESS:'); print(MCF_standard$ESS)
print('CESS:'); print(MCF_standard$CESS)
print('### performing fusion with a preconditioning matrix')
MCF_generalised <- parallel_fusion_SMC_biGaussian(particles_to_fuse = input_particles_MCF,
N = nsamples,
m = C,
time = fusion_time,
mean_vec = mean,
sd_vec = sd,
corr = corr,
betas = rep(beta, C),
precondition_matrices = lapply(input_samples, cov),
ESS_threshold = 0.5,
diffusion_estimator = diffusion_estimator,
seed = seed)
print('ESS:'); print(MCF_generalised$ESS)
print('CESS:'); print(MCF_generalised$CESS)
# plots
MCF_standard$particles <- resample_particle_y_samples(particle_set = MCF_standard$particles,
multivariate = TRUE,
resampling_method = 'resid',
seed = seed)
MCF_generalised$particles <- resample_particle_y_samples(particle_set = MCF_generalised$particles,
multivariate = TRUE,
resampling_method = 'resid',
seed = seed)
compare_samples_bivariate(list(true_samples,
MCF_standard$particles$y_samples,
MCF_generalised$particles$y_samples),
c('black', 'red', 'blue'),
c(-4, 4))
##### Bayesian Fusion (with n=1, so equal to Monte Carlo Fusion) #####
time_mesh_BF_n1 <- seq(0, fusion_time, 1)
input_particles_BF_n1 <- initialise_particle_sets(samples_to_fuse = input_samples,
multivariate = TRUE,
number_of_steps = length(time_mesh_BF_n1))
print('### performing standard Bayesian Fusion (with n=1)')
BF_standard_n1 <- parallel_GBF_biGaussian(particles_to_fuse = input_particles_BF_n1,
N = nsamples,
m = C,
time_mesh = time_mesh_BF_n1,
mean_vecs = rep(list(mean), C),
sd_vecs = rep(list(sd), C),
corrs = rep(corr, C),
betas = rep(beta, C),
precondition_matrices = rep(list(diag(1,2)), C),
ESS_threshold = 0.5,
diffusion_estimator = diffusion_estimator,
seed = seed)
print('ESS:'); print(BF_standard_n1$ESS)
print('CESS:'); print(BF_standard_n1$CESS)
print('### performing Bayesian Fusion (with n=1) with a preconditioning matrix')
BF_generalised_n1 <- parallel_GBF_biGaussian(particles_to_fuse = input_particles_BF_n1,
N = nsamples,
m = C,
time_mesh = time_mesh_BF_n1,
mean_vecs = rep(list(mean), C),
sd_vecs = rep(list(sd), C),
corrs = rep(corr, C),
betas = rep(beta, C),
precondition_matrices = lapply(input_samples, cov),
ESS_threshold = 0.5,
diffusion_estimator = diffusion_estimator,
seed = seed)
print('ESS:'); print(BF_generalised_n1$ESS)
print('CESS:'); print(BF_generalised_n1$CESS)
# plots
BF_standard_n1$particles <- resample_particle_y_samples(particle_set = BF_standard_n1$particles,
multivariate = TRUE,
resampling_method = 'resid',
seed = seed)
BF_generalised_n1$particles <- resample_particle_y_samples(particle_set = BF_generalised_n1$particles,
multivariate = TRUE,
resampling_method = 'resid',
seed = seed)
compare_samples_bivariate(list(true_samples,
BF_standard_n1$particles$y_samples,
BF_generalised_n1$particles$y_samples),
c('black', 'red', 'blue'),
c(-4, 4))
##### Bayesian Fusion (with n=20) #####
time_mesh_BF_n20 <- seq(0, fusion_time, fusion_time/20)
input_particles_BF_n20 <- initialise_particle_sets(samples_to_fuse = input_samples,
multivariate = TRUE,
number_of_steps = length(time_mesh_BF_n20))
print('### performing standard Bayesian Fusion (with n=20)')
BF_standard_n20 <- parallel_GBF_biGaussian(particles_to_fuse = input_particles_BF_n20,
N = nsamples,
m = C,
time_mesh = time_mesh_BF_n20,
mean_vecs = rep(list(mean), C),
sd_vecs = rep(list(sd), C),
corrs = rep(corr, C),
betas = rep(beta, C),
precondition_matrices = rep(list(diag(1,2)), C),
ESS_threshold = 0.5,
diffusion_estimator = diffusion_estimator,
seed = seed)
print('ESS:'); print(BF_standard_n20$ESS)
print('CESS:'); print(BF_standard_n20$CESS)
print('### performing Bayesian Fusion (with n=20) with a preconditioning matrix')
BF_generalised_n20 <- parallel_GBF_biGaussian(particles_to_fuse = input_particles_BF_n20,
N = nsamples,
m = C,
time_mesh = time_mesh_BF_n20,
mean_vecs = rep(list(mean), C),
sd_vecs = rep(list(sd), C),
corrs = rep(corr, C),
betas = rep(beta, C),
precondition_matrices = lapply(input_samples, cov),
ESS_threshold = 0.5,
diffusion_estimator = diffusion_estimator,
seed = seed)
print('ESS:'); print(BF_generalised_n20$ESS)
print('CESS:'); print(BF_generalised_n20$CESS)
# plots
# proposals
compare_samples_bivariate(list(true_samples,
BF_standard_n20$proposed_samples,
BF_generalised_n20$proposed_samples),
c('black', 'red', 'blue'),
c(-4, 4))
# resampled
BF_standard_n20$particles <- resample_particle_y_samples(particle_set = BF_standard_n20$particles,
multivariate = TRUE,
resampling_method = 'resid',
seed = seed)
BF_generalised_n20$particles <- resample_particle_y_samples(particle_set = BF_generalised_n20$particles,
multivariate = TRUE,
resampling_method = 'resid',
seed = seed)
compare_samples_bivariate(list(true_samples,
BF_standard_n20$particles$y_samples,
BF_generalised_n20$particles$y_samples),
c('black', 'red', 'blue'),
c(-4, 4))
save.image('bivariate_Gaussian_bf_example.RData')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.