| bchp | R Documentation |
Density, distribution function, quantile function, and random
generation for the Box-Cox hyperbolic distribution with parameters mu,
sigma, lambda, and nu.
dbchp(x, mu, sigma, lambda, nu, log = FALSE)
pbchp(q, mu, sigma, lambda, nu, lower.tail = TRUE)
qbchp(p, mu, sigma, lambda, nu, lower.tail = TRUE)
rbchp(n, mu, sigma, lambda, nu)
x, q |
vector of positive quantiles. |
mu |
vector of strictly positive scale parameters. |
sigma |
vector of strictly positive relative dispersion parameters. |
lambda |
vector of real-valued skewness parameters. If |
nu |
strictly positive heavy-tailness parameter. |
log |
logical; if |
lower.tail |
logical; if |
p |
vector of probabilities. |
n |
number of random values to return. |
dbchp returns the density, pbchp gives the distribution function,
qbchp gives the quantile function, and rbchp generates random observations.
Invalid arguments will result in return value NaN, with an warning.
The length of the result is determined by n for rbchp, and is the
maximum of the lengths of the numerical arguments for the other functions.
Rodrigo M. R. de Medeiros <rodrigo.matheus@live.com>
Vanegas, L. H., and Paula, G. A. (2016). Log-symmetric distributions: statistical properties and parameter estimation. Brazilian Journal of Probability and Statistics, 30, 196-220.
Ferrari, S. L. P., and Fumes, G. (2017). Box-Cox symmetric distributions and applications to nutritional data. AStA Advances in Statistical Analysis, 101, 321-344.
mu <- 8
sigma <- 1
lambda <- 2
nu <- 4
# Sample generation
x <- rbchp(10000, mu, sigma, lambda, nu)
# Density
hist(x, prob = TRUE, main = "The Box-Cox Hyperbolic Distribution", col = "white")
curve(dbchp(x, mu, sigma, lambda, nu), add = TRUE, col = 2, lwd = 2)
legend("topleft", "Probability density function", col = 2, lwd = 2, lty = 1)
# Distribution function
plot(ecdf(x), main = "The Box-Cox Hyperbolic Distribution", ylab = "Distribution function")
curve(pbchp(x, mu, sigma, lambda, nu), add = TRUE, col = 2, lwd = 2)
legend("bottomright", c("Emp. distribution function", "Theo. distribution function"),
col = c(1, 2), lwd = 2, lty = c(1, 1)
)
# Quantile function
plot(seq(0.01, 0.99, 0.001), quantile(x, seq(0.01, 0.99, 0.001)),
type = "l",
xlab = "p", ylab = "Quantile function", main = "The Box-Cox Hyperbolic Distribution"
)
curve(qbchp(x, mu, sigma, lambda, nu), add = TRUE, col = 2, lwd = 2, from = 0, to = 1)
legend("topleft", c("Emp. quantile function", "Theo. quantile function"),
col = c(1, 2), lwd = 2, lty = c(1, 1)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.