bcnsm | R Documentation |
These functions provide the joint probability density function and a random generator for the class of the multivariate Box-Cox symmetric distributions generated by a normal scale mixture copula.
dbcnsm(
x,
mu,
sigma,
lambda,
nu = NULL,
Gamma = diag(ncol(x)),
copula = c("gaussian", "t", "slash", "hyp"),
delta = NULL,
margins = "bcno",
log = FALSE
)
rbcnsm(
n,
mu,
sigma,
lambda,
nu,
Gamma = diag(ncol(x)),
copula = c("gaussian", "t", "slash", "hyp"),
delta = NULL,
margins = "bcno"
)
x |
vector or matrix of non-negative quantiles. If |
mu |
vector of the marginal scale parameters in |
sigma |
vector of the marginal relative dispersion parameters in |
lambda |
vector of the marginal skewness parameters in |
nu |
vector of possible extra parameters of the marginal distributions. In the case where
no marginal is indexed by |
Gamma |
the association matrix. It must be a positive-definite correlation matrix, default is
|
copula |
character; informs which normal scale mixture distribution
should be used to generate the NSM copula. Currently,
the copulas available are: Gaussian ( |
delta |
possible extra parameter associated with the mixing distribution of the
copula. For example, the degrees of freedom of the |
margins |
a character or a character vector; specifies the marginal BCS distributions. If all
BCS margins are the same, it is sufficient to enter only one character. A table with the
current available BCS distributions can be seen in |
log |
logical; if |
n |
number of replicates to return. |
dbcnsm
returns the evaluated joint density function and
rbcnsm
generates random values.
Rodrigo M. R. Medeiros <rodrigo.matheus@live.com>
Vanegas, L. H., and Paula, G. A. (2016). Log-symmetric distributions: statistical properties and parameter estimation. Brazilian Journal of Probability and Statistics, 30, 196–220.
Ferrari, S. L. P., and Fumes, G. (2017). Box-Cox symmetric distributions and applications to nutritional data. AStA Advances in Statistical Analysis, 101, 321–344.
### Sample size and dimension
n <- 1000
d <- 4
### Association matrix
Gamma <- matrix(0.8, d, d)
diag(Gamma) <- 1
### Marginal specifications
# Marginals
margins <- c("bchp", "bcsl", "bcpe", "bcloii")
# Marginal parameters
mu <- c(19, 20, 15, 20)
sigma <- c(0.2, 0.6, 0.4, 0.3)
lambda <- c(-1, 1.2, 0, 1.6)
nu <- c(6, 4, 8, NA)
### Copula
copula <- "slash"
delta <- 3
### Generating observations
y <- rbcnsm(n, mu, sigma, lambda, nu, Gamma, copula, delta, margins)
mvplot(y) ## See ?mvplot for documentation
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.