lhp | R Documentation |
Density, distribution function, quantile function, and random
generation for the log-hyperbolic distribution with parameters mu
,
sigma
, and nu
.
dlhp(x, mu, sigma, nu, log = FALSE, ...)
plhp(q, mu, sigma, nu, lower.tail = TRUE, ...)
qlhp(p, mu, sigma, nu, lower.tail = TRUE, ...)
rlhp(n, mu, sigma, nu)
x, q |
vector of positive quantiles. |
mu |
vector of strictly positive scale parameters. |
sigma |
vector of strictly positive relative dispersion parameters. |
nu |
strictly positive heavy-tailedness parameter. |
log |
logical; if |
... |
further arguments. |
lower.tail |
logical; if |
p |
vector of probabilities. |
n |
number of random values to return. |
A random variable X has a log-hyperbolic distribution with parameter mu
and
sigma
if log(X) follows a hyperbolic distribution with location parameter log(mu)
and dispersion parameter sigma
. It can be showed that mu
is the median of X.
Rodrigo M. R. de Medeiros <rodrigo.matheus@live.com>
Vanegas, L. H., and Paula, G. A. (2016). Log-symmetric distributions: statistical properties and parameter estimation. Brazilian Journal of Probability and Statistics, 30, 196-220.
mu <- 8
sigma <- 1
nu <- 4
# Sample generation
x <- rlhp(10000, mu, sigma, nu)
# Density
hist(x, prob = TRUE, main = "The Log-Hyperbolic Distribution", col = "white")
curve(dlhp(x, mu, sigma, nu), add = TRUE, col = 2, lwd = 2)
legend("topright", "Probability density function", col = 2, lwd = 2, lty = 1)
# Distribution function
plot(ecdf(x), main = "The Log-Hyperbolic Distribution", ylab = "Distribution function")
curve(plhp(x, mu, sigma, nu), add = TRUE, col = 2, lwd = 2)
legend("bottomright", c("Emp. distribution function", "Theo. distribution function"),
col = c(1, 2), lwd = 2, lty = c(1, 1)
)
# Quantile function
plot(seq(0.01, 0.99, 0.001), quantile(x, seq(0.01, 0.99, 0.001)),
type = "l",
xlab = "p", ylab = "Quantile function", main = "The Log-Hyperbolic Distribution"
)
curve(qlhp(x, mu, sigma, nu), add = TRUE, col = 2, lwd = 2, from = 0, to = 1)
legend("topleft", c("Emp. quantile function", "Theo. quantile function"),
col = c(1, 2), lwd = 2, lty = c(1, 1)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.