lno | R Documentation |
Density, distribution function, quantile function, and random
generation for the log-normal distribution with parameters mu
and
sigma
.
dlno(x, mu, sigma, log = FALSE, ...)
plno(q, mu, sigma, lower.tail = TRUE, ...)
qlno(p, mu, sigma, lower.tail = TRUE, ...)
rlno(n, mu, sigma)
x, q |
vector of positive quantiles. |
mu |
vector of strictly positive scale parameters. |
sigma |
vector of strictly positive relative dispersion parameters. |
log |
logical; if |
... |
further arguments. |
lower.tail |
logical; if |
p |
vector of probabilities. |
n |
number of random values to return. |
A random variable X has a log-normal distribution with parameter mu
and
sigma
if log(X) follows a normal distribution with location parameter log(mu)
and dispersion parameter sigma
. It can be showed that mu
is the median of X.
dlno
returns the density, plno
gives the distribution
function, qlno
gives the quantile function, and rlno
generates random observations.
Invalid arguments will result in return value NaN
.
The length of the result is determined by n
for rlno
, and is the
maximum of the lengths of the numerical arguments for the other functions.
Rodrigo M. R. de Medeiros <rodrigo.matheus@live.com>
Vanegas, L. H., and Paula, G. A. (2016). Log-symmetric distributions: statistical properties and parameter estimation. Brazilian Journal of Probability and Statistics, 30, 196-220.
mu <- 8
sigma <- 1
# Sample generation
x <- rlno(10000, mu, sigma)
# Density
hist(x, prob = TRUE, main = "The Log-Normal Distribution", col = "white")
curve(dlno(x, mu, sigma), add = TRUE, col = 2, lwd = 2)
legend("topright", "Probability density function", col = 2, lwd = 2, lty = 1)
# Distribution function
plot(ecdf(x), main = "The Log-Normal Distribution", ylab = "Distribution function")
curve(plno(x, mu, sigma), add = TRUE, col = 2, lwd = 2)
legend("bottomright", c("Emp. distribution function", "Theo. distribution function"),
col = c(1, 2), lwd = 2, lty = c(1, 1)
)
# Quantile function
plot(seq(0.01, 0.99, 0.001), quantile(x, seq(0.01, 0.99, 0.001)),
type = "l",
xlab = "p", ylab = "Quantile function", main = "The Log-Normal Distribution"
)
curve(qlno(x, mu, sigma), add = TRUE, col = 2, lwd = 2, from = 0, to = 1)
legend("topleft", c("Emp. quantile function", "Theo. quantile function"),
col = c(1, 2), lwd = 2, lty = c(1, 1)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.