| bct | R Documentation |
Density, distribution function, quantile function, and random
generation for the Box-Cox t distribution with parameters mu,
sigma, lambda, and nu.
dbct(x, mu, sigma, lambda, nu, log = FALSE)
pbct(q, mu, sigma, lambda, nu, lower.tail = TRUE)
qbct(p, mu, sigma, lambda, nu, lower.tail = TRUE)
rbct(n, mu, sigma, lambda, nu)
x, q |
vector of positive quantiles. |
mu |
vector of strictly positive scale parameters. |
sigma |
vector of strictly positive relative dispersion parameters. |
lambda |
vector of real-valued skewness parameters. If |
nu |
strictly positive heavy-tailedness parameter. |
log |
logical; if |
lower.tail |
logical; if |
p |
vector of probabilities. |
n |
number of random values to return. |
dbct returns the density, pbct gives the distribution function,
qbct gives the quantile function, and rbct generates random observations.
Invalid arguments will result in return value NaN, with an warning.
The length of the result is determined by n for rbct, and is the
maximum of the lengths of the numerical arguments for the other functions.
Rodrigo M. R. de Medeiros <rodrigo.matheus@live.com>
Rigby, R. A., Stasinopoulos, D.M. (2006). Using the Box-Cox t distribution in GAMLSS to model skewness and kurtosis. Statistical Model, 6, 209-229
Vanegas, L. H., and Paula, G. A. (2016). Log-symmetric distributions: statistical properties and parameter estimation. Brazilian Journal of Probability and Statistics, 30, 196-220.
Ferrari, S. L. P., and Fumes, G. (2017). Box-Cox symmetric distributions and applications to nutritional data. AStA Advances in Statistical Analysis, 101, 321-344.
mu <- 8
sigma <- 1
lambda <- 2
nu <- 4
# Sample generation
x <- rbct(10000, mu, sigma, lambda, nu)
# Density
hist(x, prob = TRUE, main = "The Box-Cox t Distribution", col = "white")
curve(dbct(x, mu, sigma, lambda, nu), add = TRUE, col = 2, lwd = 2)
legend("topleft", "Probability density function", col = 2, lwd = 2, lty = 1)
# Distribution function
plot(ecdf(x), main = "The Box-Cox t Distribution", ylab = "Distribution function")
curve(pbct(x, mu, sigma, lambda, nu), add = TRUE, col = 2, lwd = 2)
legend("topleft", c("Emp. distribution function", "Theo. distribution function"),
col = c(1, 2), lwd = 2, lty = c(1, 1)
)
# Quantile function
plot(seq(0.01, 0.99, 0.001), quantile(x, seq(0.01, 0.99, 0.001)),
type = "l",
xlab = "p", ylab = "Quantile function", main = "The Box-Cox t Distribution"
)
curve(qbct(x, mu, sigma, lambda, nu), add = TRUE, col = 2, lwd = 2, from = 0, to = 1)
legend("topleft", c("Emp. quantile function", "Theo. quantile function"),
col = c(1, 2), lwd = 2, lty = c(1, 1)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.