# The Box-Cox t distribution -----------------------------------------------------------------------
#' @name bct
#'
#' @title The Box-Cox t Distribution
#'
#' @description Density, distribution function, quantile function, and random
#' generation for the Box-Cox t distribution with parameters \code{mu},
#' \code{sigma}, \code{lambda}, and \code{nu}.
#'
#' @param x,q vector of positive quantiles.
#' @param p vector of probabilities.
#' @param n number of random values to return.
#' @param mu vector of strictly positive scale parameters.
#' @param sigma vector of strictly positive relative dispersion parameters.
#' @param lambda vector of real-valued skewness parameters. If \code{lambda = 0}, the Box-Cox
#' t distribution reduces to the log-t distribution with parameters
#' \code{mu}, \code{sigma}, and \code{nu} (see \code{\link{lt}}).
#' @param nu strictly positive heavy-tailedness parameter.
#' @param lower.tail logical; if \code{TRUE} (default), probabilities are
#' \code{P[X <= x]}, otherwise, \code{P[X > x]}.
#' @param log logical; if \code{TRUE}, probabilities \code{p} are given as \code{log(p)}.
#'
#' @return \code{dbct} returns the density, \code{pbct} gives the distribution function,
#' \code{qbct} gives the quantile function, and \code{rbct} generates random observations.
#'
#' Invalid arguments will result in return value \code{NaN}, with an warning.
#'
#' The length of the result is determined by \code{n} for \code{rbct}, and is the
#' maximum of the lengths of the numerical arguments for the other functions.
#'
#' @references Rigby, R. A., Stasinopoulos, D.M. (2006). Using the Box-Cox t
#' distribution in GAMLSS to model skewness and kurtosis. \emph{Statistical Model}, 6, 209-229
#'
#' @references Vanegas, L. H., and Paula, G. A. (2016). Log-symmetric distributions: statistical
#' properties and parameter estimation. \emph{Brazilian Journal of Probability and Statistics}, 30, 196-220.
#'
#' @references Ferrari, S. L. P., and Fumes, G. (2017). Box-Cox symmetric distributions and
#' applications to nutritional data. \emph{AStA Advances in Statistical Analysis}, 101, 321-344.
#'
#' @author Rodrigo M. R. de Medeiros <\email{rodrigo.matheus@live.com}>
#'
#' @examples
#' mu <- 8
#' sigma <- 1
#' lambda <- 2
#' nu <- 4
#'
#' # Sample generation
#' x <- rbct(10000, mu, sigma, lambda, nu)
#'
#' # Density
#' hist(x, prob = TRUE, main = "The Box-Cox t Distribution", col = "white")
#' curve(dbct(x, mu, sigma, lambda, nu), add = TRUE, col = 2, lwd = 2)
#' legend("topleft", "Probability density function", col = 2, lwd = 2, lty = 1)
#'
#' # Distribution function
#' plot(ecdf(x), main = "The Box-Cox t Distribution", ylab = "Distribution function")
#' curve(pbct(x, mu, sigma, lambda, nu), add = TRUE, col = 2, lwd = 2)
#' legend("topleft", c("Emp. distribution function", "Theo. distribution function"),
#' col = c(1, 2), lwd = 2, lty = c(1, 1)
#' )
#'
#' # Quantile function
#' plot(seq(0.01, 0.99, 0.001), quantile(x, seq(0.01, 0.99, 0.001)),
#' type = "l",
#' xlab = "p", ylab = "Quantile function", main = "The Box-Cox t Distribution"
#' )
#' curve(qbct(x, mu, sigma, lambda, nu), add = TRUE, col = 2, lwd = 2, from = 0, to = 1)
#' legend("topleft", c("Emp. quantile function", "Theo. quantile function"),
#' col = c(1, 2), lwd = 2, lty = c(1, 1)
#' )
NULL
# Density
#' @rdname bct
#' @export
dbct <- function(x, mu, sigma, lambda, nu, log = FALSE) {
if (is.matrix(x)) d <- ncol(x) else d <- 1L
maxl <- max(c(length(x), length(mu), length(sigma), length(lambda), length(nu)))
x <- rep(x, length.out = maxl)
mu <- rep(mu, length.out = maxl)
sigma <- rep(sigma, length.out = maxl)
lambda <- rep(lambda, length.out = maxl)
nu <- rep(nu, length.out = maxl)
pmf <- rep(-Inf, maxl)
# NaN index
pmf[which(mu <= 0 | sigma <= 0 | nu <= 0)] <- NaN
# Positive density index
id1 <- which(x > 0 & lambda != 0 & !is.nan(pmf))
id2 <- which(x > 0 & lambda == 0 & !is.nan(pmf))
# Extended Box-Cox transformation
z <- rep(NaN, length.out = maxl)
z[id1] <- ((x[id1] / mu[id1])^lambda[id1] - 1) / (sigma[id1] * lambda[id1])
z[id2] <- log(x[id2] / mu[id2]) / sigma[id2]
pmf[id1] <- (lambda[id1] - 1) * log(x[id1]) + stats::dt(z[id1], df = nu[id1], log = TRUE) -
stats::pt(1 / (sigma[id1] * abs(lambda[id1])), df = nu[id1], log.p = TRUE) -
lambda[id1] * log(mu[id1]) - log(sigma[id1])
pmf[id2] <- stats::dt(z[id2], df = nu[id2], log = TRUE) - log(sigma[id2] * x[id2])
if (!log) pmf <- exp(pmf)
if (d > 1L) matrix(pmf, ncol = d) else pmf
}
## Distribution function
#' @rdname bct
#' @export
pbct <- function(q, mu, sigma, lambda, nu, lower.tail = TRUE) {
if (is.matrix(q)) d <- ncol(q) else d <- 1L
maxl <- max(c(length(q), length(mu), length(sigma), length(lambda), length(nu)))
q <- rep(q, length.out = maxl)
mu <- rep(mu, length.out = maxl)
sigma <- rep(sigma, length.out = maxl)
lambda <- rep(lambda, length.out = maxl)
nu <- rep(nu, length.out = maxl)
# Extended Box-Cox transformation
z <- rep(NaN, length.out = maxl)
id1 <- which(q > 0 & mu > 0 & sigma > 0 & lambda != 0 & nu > 0)
id2 <- which(q > 0 & mu > 0 & sigma > 0 & lambda == 0 & nu > 0)
z[id1] <- ((q[id1] / mu[id1])^lambda[id1] - 1) / (sigma[id1] * lambda[id1])
z[id2] <- log(q[id2] / mu[id2]) / sigma[id2]
id1 <- which(q > 0 & mu > 0 & sigma > 0 & lambda <= 0 & nu > 0)
id2 <- which(q > 0 & mu > 0 & sigma > 0 & lambda > 0 & nu > 0)
cdf <- rep(NaN, length.out = maxl)
cdf[id1] <- stats::pt(z[id1], df = nu[id1]) / stats::pt(1 / (sigma[id1] * abs(lambda[id1])), df = nu[id1])
cdf[id2] <- (stats::pt(z[id2], df = nu[id2]) - stats::pt(-1 / (sigma[id2] * lambda[id2]), df = nu[id2])) /
stats::pt(1 / (sigma[id2] * lambda[id2]), df = nu[id2])
cdf[which(q <= 0 & mu > 0 & sigma > 0 & nu > 0)] <- 0
if (!lower.tail) cdf <- 1 - cdf
if (d > 1L) matrix(cdf, ncol = d) else cdf
}
## Quantile function
#' @rdname bct
#' @export
qbct <- function(p, mu, sigma, lambda, nu, lower.tail = TRUE) {
if (is.matrix(p)) d <- ncol(p) else d <- 1L
maxl <- max(c(length(p), length(mu), length(sigma), length(lambda), length(nu)))
p <- rep(p, length.out = maxl)
mu <- rep(mu, length.out = maxl)
sigma <- rep(sigma, length.out = maxl)
lambda <- rep(lambda, length.out = maxl)
nu <- rep(nu, length.out = maxl)
if (!lower.tail) p <- 1 - p
qtf <- zp <- rep(NaN, length.out = maxl)
# z_p
id1 <- which(p > 0 & p < 1 & mu > 0 & sigma > 0 & lambda <= 0 & nu > 0)
id2 <- which(p > 0 & p < 1 & mu > 0 & sigma > 0 & lambda > 0 & nu > 0)
zp[id1] <- stats::qt(p[id1] * stats::pt(1 / (sigma[id1] * abs(lambda[id1])), df = nu[id1]), df = nu[id1])
zp[id2] <- stats::qt(1 - (1 - p[id2]) * stats::pt(1 / (sigma[id2] * abs(lambda[id2])), df = nu[id2]), df = nu[id2])
# Quantile function
id1 <- which(p > 0 & p < 1 & mu > 0 & sigma > 0 & lambda != 0 & nu > 0)
id2 <- which(p > 0 & p < 1 & mu > 0 & sigma > 0 & lambda == 0 & nu > 0)
id3 <- which(p == 0 & mu > 0 & sigma > 0 & nu > 0)
id4 <- which(p == 1 & mu > 0 & sigma > 0 & nu > 0)
qtf[id1] <- exp(log(mu[id1]) + (1 / lambda[id1]) * log1p(sigma[id1] * lambda[id1] * zp[id1]))
qtf[id2] <- exp(log(mu[id2]) + sigma[id2] * zp[id2])
qtf[id3] <- 0
qtf[id4] <- Inf
if (d > 1L) matrix(qtf, ncol = d) else qtf
}
# Random generation
#' @rdname bct
#' @export
rbct <- function(n, mu, sigma, lambda, nu) {
u <- stats::runif(n)
qbct(u, mu, sigma, lambda, nu)
}
# BCS class
bct <- function(x) {
out <- list()
# Abbreviation
out$abb <- "bct"
# Name
out$name <- "Box-Cox t"
# Number of parameters
out$npar <- 4
# Extra parameter
out$extrap <- TRUE
# Initial values -------------------------------------------------------------
out$start <- function(x) {
n <- length(x)
gamlss_fit <- suppressWarnings(try(gamlss::gamlss(x ~ 1, family = gamlss.dist::BCT(mu.link = "log"), trace = FALSE), silent = TRUE))
if (unique(grepl("Error", gamlss_fit))) {
convergence <- FALSE
} else {
convergence <- gamlss_fit$converged
}
if (convergence) {
c(exp(stats::coef(gamlss_fit, "mu")), exp(stats::coef(gamlss_fit, "sigma")),
stats::coef(gamlss_fit, "nu"), min(exp(stats::coef(gamlss_fit, "tau")), 20))
} else {
CV <- 0.75 * (stats::quantile(x, 0.75) - stats::quantile(x, 0.25)) / stats::median(x)
mu0 <- stats::median(x)
sigma0 <- asinh(CV / 1.5) * stats::qlogis(0.75)
z <- log(x / mu0) / sigma0
grid <- seq(1, 20, 1)
upsilon <- function(nu){
cdf <- sort(stats::dt(z, nu))
temp <- stats::qqnorm(stats::qnorm(cdf), plot.it = FALSE)
mean(abs(sort(temp$x) - sort(temp$y)))
}
out <- apply(matrix(grid), 1, upsilon)
nu0 <- grid[which.min(out)]
c(mu0, sigma0, 0L, nu0)
}
}
structure(out, class = "bcs")
}
# The Log-t distribution -------------------------------------------------------------------
#' @name lt
#'
#' @title The Log-t Distribution
#'
#' @description Density, distribution function, quantile function, and random
#' generation for the log-t distribution with parameters \code{mu},
#' \code{sigma}, and \code{nu}.
#'
#' @param x,q vector of positive quantiles.
#' @param p vector of probabilities.
#' @param n number of random values to return.
#' @param mu vector of strictly positive scale parameters.
#' @param sigma vector of strictly positive relative dispersion parameters.
#' @param nu strictly positive heavy-tailedness parameter.
#' @param lower.tail logical; if \code{TRUE} (default), probabilities are
#' \code{P[X <= x]}, otherwise, \code{P[X > x]}.
#' @param log logical; if \code{TRUE}, probabilities \code{p} are given as \code{log(p)}.
#' @param ... further arguments.
#'
#' @details A random variable X has a log-t distribution with parameter \code{mu} and
#' \code{sigma} if log(X) follows a Student's t distribution with location parameter \code{log(mu)}
#' and dispersion parameter \code{sigma}. It can be showed that \code{mu} is the median of X.
#'
#' @return \code{dlt} returns the density, \code{plt} gives the distribution
#' function, \code{qlt} gives the quantile function, and \code{rlt}
#' generates random observations.
#'
#' Invalid arguments will result in return value \code{NaN}.
#'
#' The length of the result is determined by \code{n} for \code{rlt}, and is the
#' maximum of the lengths of the numerical arguments for the other functions.
#'
#' @references Vanegas, L. H., and Paula, G. A. (2016). Log-symmetric distributions: statistical
#' properties and parameter estimation. \emph{Brazilian Journal of Probability and Statistics}, 30, 196-220.
#'
#' @author Rodrigo M. R. de Medeiros <\email{rodrigo.matheus@live.com}>
#'
#' @examples
#' mu <- 8
#' sigma <- 1
#' nu <- 4
#'
#' # Sample generation
#' x <- rlt(10000, mu, sigma, nu)
#'
#' # Density
#' hist(x, prob = TRUE, main = "The Log-t Distribution", col = "white")
#' curve(dlt(x, mu, sigma, nu), add = TRUE, col = 2, lwd = 2)
#' legend("topright", "Probability density function", col = 2, lwd = 2, lty = 1)
#'
#' # Distribution function
#' plot(ecdf(x), main = "The Log-t Distribution", ylab = "Distribution function")
#' curve(plt(x, mu, sigma, nu), add = TRUE, col = 2, lwd = 2)
#' legend("bottomright", c("Emp. distribution function", "Theo. distribution function"),
#' col = c(1, 2), lwd = 2, lty = c(1, 1)
#' )
#'
#' # Quantile function
#' plot(seq(0.01, 0.99, 0.001), quantile(x, seq(0.01, 0.99, 0.001)),
#' type = "l",
#' xlab = "p", ylab = "Quantile function", main = "The Log-t Distribution"
#' )
#' curve(qlt(x, mu, sigma, nu), add = TRUE, col = 2, lwd = 2, from = 0, to = 1)
#' legend("topleft", c("Emp. quantile function", "Theo. quantile function"),
#' col = c(1, 2), lwd = 2, lty = c(1, 1)
#' )
NULL
# Density
#' @rdname lt
#' @export
dlt <- function(x, mu, sigma, nu, log = FALSE, ...) {
if (is.matrix(x)) d <- ncol(x) else d <- 1L
maxl <- max(c(length(x), length(mu), length(sigma), length(nu)))
x <- rep(x, length.out = maxl)
mu <- rep(mu, length.out = maxl)
sigma <- rep(sigma, length.out = maxl)
nu <- rep(nu, length.out = maxl)
pmf <- rep(-Inf, maxl)
# NaN index
pmf[which(mu <= 0 | sigma <= 0 | nu <= 0)] <- NaN
# Positive density index
id <- which(x > 0 & !is.nan(pmf))
# Transformations
z <- rep(NaN, length.out = maxl)
z[id] <- log(x[id] / mu[id]) / sigma[id]
pmf[id] <- stats::dt(z[id], df = nu[id], log = TRUE) - log(sigma[id] * x[id])
if (!log) pmf <- exp(pmf)
if (d > 1L) matrix(pmf, ncol = d) else pmf
}
## Distribution function
#' @rdname lt
#' @export
plt <- function(q, mu, sigma, nu, lower.tail = TRUE, ...) {
if (is.matrix(q)) d <- ncol(q) else d <- 1L
maxl <- max(c(length(q), length(mu), length(sigma), length(nu)))
q <- rep(q, length.out = maxl)
mu <- rep(mu, length.out = maxl)
sigma <- rep(sigma, length.out = maxl)
nu <- rep(nu, length.out = maxl)
# Extended Box-Cox transformation
z <- rep(NaN, length.out = maxl)
id <- which(q > 0 & mu > 0 & sigma > 0 & nu > 0)
z[id] <- log(q[id] / mu[id]) / sigma[id]
cdf <- rep(NaN, length.out = maxl)
cdf[id] <- stats::pt(z[id], df = nu[id])
cdf[which(q <= 0 & mu > 0 & sigma > 0 & nu > 0)] <- 0
if (!lower.tail) cdf <- 1 - cdf
if (d > 1L) matrix(cdf, ncol = d) else cdf
}
## Quantile function
#' @rdname lt
#' @export
qlt <- function(p, mu, sigma, nu, lower.tail = TRUE, ...) {
if (is.matrix(p)) d <- ncol(p) else d <- 1L
maxl <- max(c(length(p), length(mu), length(sigma), length(nu)))
p <- rep(p, length.out = maxl)
mu <- rep(mu, length.out = maxl)
sigma <- rep(sigma, length.out = maxl)
nu <- rep(nu, length.out = maxl)
if (!lower.tail) p <- 1 - p
qtf <- zp <- rep(NaN, length.out = maxl)
# z_p
id <- which(p > 0 & p < 1 & mu > 0 & sigma > 0 & nu > 0)
zp[id] <- stats::qt(p[id], df = nu[id])
# Quantile function
id1 <- which(p > 0 & p < 1 & mu > 0 & sigma > 0 & nu > 0)
id2 <- which(p == 0 & mu > 0 & sigma > 0 & nu > 0)
id3 <- which(p == 1 & mu > 0 & sigma > 0 & nu > 0)
qtf[id1] <- exp(log(mu[id1]) + sigma[id1] * zp[id1])
qtf[id2] <- 0
qtf[id3] <- Inf
if (d > 1L) matrix(qtf, ncol = d) else qtf
}
# Random generation
#' @rdname lt
#' @export
rlt <- function(n, mu, sigma, nu) {
exp(log(mu) + sigma * stats::rt(n, df = nu))
}
# BCS class
lt <- function(x) {
out <- list()
# Abbreviation
out$abb <- "lt"
# Name
out$name <- "Log-t"
# Number of parameters
out$npar <- 3
# Extra parameter
out$extrap <- TRUE
# Initial values -------------------------------------------------------------
out$start <- function(x) {
n <- length(x)
gamlss_fit <- suppressWarnings(try(gamlss::gamlss(x ~ 1, family = gamlss.dist::BCT(mu.link = "log"),
trace = FALSE, nu.fix = TRUE, nu.start = 0L), silent = TRUE))
if (unique(grepl("Error", gamlss_fit))) {
convergence <- FALSE
} else {
convergence <- gamlss_fit$converged
}
if (convergence) {
c(exp(stats::coef(gamlss_fit, "mu")), exp(stats::coef(gamlss_fit, "sigma")),
min(exp(stats::coef(gamlss_fit, "tau")), 20))
} else {
CV <- 0.75 * (stats::quantile(x, 0.75) - stats::quantile(x, 0.25)) / stats::median(x)
mu0 <- stats::median(x)
sigma0 <- asinh(CV / 1.5) * stats::qlogis(0.75)
z <- log(x / mu0) / sigma0
grid <- seq(1, 20, 1)
upsilon <- function(nu){
cdf <- sort(stats::dt(z, nu))
temp <- stats::qqnorm(stats::qnorm(cdf), plot.it = FALSE)
mean(abs(sort(temp$x) - sort(temp$y)))
}
out <- apply(matrix(grid), 1, upsilon)
nu0 <- grid[which.min(out)]
c(mu0, sigma0, nu0)
}
}
structure(out, class = "bcs")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.