| bcloi | R Documentation |
Density, distribution function, quantile function, and random
generation for the Box-Cox type I logistic distribution with parameters mu,
sigma, and lambda.
dbcloi(x, mu, sigma, lambda, log = FALSE, ...)
pbcloi(q, mu, sigma, lambda, lower.tail = TRUE, ...)
qbcloi(p, mu, sigma, lambda, lower.tail = TRUE, ...)
rbcloi(n, mu, sigma, lambda)
x, q |
vector of positive quantiles. |
mu |
vector of strictly positive scale parameters. |
sigma |
vector of strictly positive relative dispersion parameters. |
lambda |
vector of real-valued skewness parameters. If |
log |
logical; if |
... |
further arguments. |
lower.tail |
logical; if |
p |
vector of probabilities. |
n |
number of random values to return. |
dbcloi returns the density, pbcloi gives the distribution function,
qbcloi gives the quantile function, and rbcloi generates random observations.
Invalid arguments will result in return value NaN, with an warning.
The length of the result is determined by n for rbcloi, and is the
maximum of the lengths of the numerical arguments for the other functions.
Rodrigo M. R. de Medeiros <rodrigo.matheus@live.com>
Ferrari, S. L. P., and Fumes, G. (2017). Box-Cox symmetric distributions and applications to nutritional data. AStA Advances in Statistical Analysis, 101, 321-344.
Vanegas, L. H., and Paula, G. A. (2016). Log-symmetric distributions: statistical properties and parameter estimation. Brazilian Journal of Probability and Statistics, 30, 196-220.
mu <- 8
sigma <- 1
lambda <- 2
# Sample generation
x <- rbcloi(10000, mu, sigma, lambda)
# Density
hist(x, prob = TRUE, main = "The Box-Cox Type I Logistic Distribution", col = "white")
curve(dbcloi(x, mu, sigma, lambda), add = TRUE, col = 2, lwd = 2)
legend("topleft", "Prob. density function", col = 2, lwd = 2, lty = 1)
# Distribution function
plot(ecdf(x), main = "The Box-Cox Type I Logistic Distribution", ylab = "Distribution function")
curve(pbcloi(x, mu, sigma, lambda), add = TRUE, col = 2, lwd = 2)
legend("bottomright", c("Emp. distribution function", "Theo. distribution function"),
col = c(1, 2), lwd = 2, lty = c(1, 1)
)
# Quantile function
plot(seq(0.01, 0.99, 0.001), quantile(x, seq(0.01, 0.99, 0.001)),
type = "l",
xlab = "p", ylab = "Quantile function", main = "The Box-Cox Type I Logistic Distribution"
)
curve(qbcloi(x, mu, sigma, lambda), add = TRUE, col = 2, lwd = 2, from = 0, to = 1)
legend("topleft", c("Emp. quantile function", "Theo. quantile function"),
col = c(1, 2), lwd = 2, lty = c(1, 1)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.