# The Box-Cox type I logistic distribution ---------------------------------------------------------
#' @name bcloi
#'
#' @title The Box-Cox Type I Logistic Distribution
#'
#' @description Density, distribution function, quantile function, and random
#' generation for the Box-Cox type I logistic distribution with parameters \code{mu},
#' \code{sigma}, and \code{lambda}.
#'
#' @param x,q vector of positive quantiles.
#' @param p vector of probabilities.
#' @param n number of random values to return.
#' @param mu vector of strictly positive scale parameters.
#' @param sigma vector of strictly positive relative dispersion parameters.
#' @param lambda vector of real-valued skewness parameters. If \code{lambda = 0}, the Box-Cox
#' type I logistic distribution reduces to the log-type I logistic distribution with parameters
#' \code{mu} and \code{sigma} (see \code{\link{lloi}}).
#' @param lower.tail logical; if \code{TRUE} (default), probabilities are
#' \code{P[X <= x]}, otherwise, \code{P[X > x]}.
#' @param log logical; if \code{TRUE}, probabilities \code{p} are given as \code{log(p)}.
#' @param ... further arguments.
#'
#' @return \code{dbcloi} returns the density, \code{pbcloi} gives the distribution function,
#' \code{qbcloi} gives the quantile function, and \code{rbcloi} generates random observations.
#'
#' Invalid arguments will result in return value \code{NaN}, with an warning.
#'
#' The length of the result is determined by \code{n} for \code{rbcloi}, and is the
#' maximum of the lengths of the numerical arguments for the other functions.
#'
#' @references Ferrari, S. L. P., and Fumes, G. (2017). Box-Cox symmetric distributions and
#' applications to nutritional data. \emph{AStA Advances in Statistical Analysis}, 101, 321-344.
#'
#' @references Vanegas, L. H., and Paula, G. A. (2016). Log-symmetric distributions: statistical
#' properties and parameter estimation. \emph{Brazilian Journal of Probability and Statistics}, 30, 196-220.
#'
#' @author Rodrigo M. R. de Medeiros <\email{rodrigo.matheus@live.com}>
#'
#' @examples
#' mu <- 8
#' sigma <- 1
#' lambda <- 2
#'
#' # Sample generation
#' x <- rbcloi(10000, mu, sigma, lambda)
#'
#' # Density
#' hist(x, prob = TRUE, main = "The Box-Cox Type I Logistic Distribution", col = "white")
#' curve(dbcloi(x, mu, sigma, lambda), add = TRUE, col = 2, lwd = 2)
#' legend("topleft", "Prob. density function", col = 2, lwd = 2, lty = 1)
#'
#' # Distribution function
#' plot(ecdf(x), main = "The Box-Cox Type I Logistic Distribution", ylab = "Distribution function")
#' curve(pbcloi(x, mu, sigma, lambda), add = TRUE, col = 2, lwd = 2)
#' legend("bottomright", c("Emp. distribution function", "Theo. distribution function"),
#' col = c(1, 2), lwd = 2, lty = c(1, 1)
#' )
#'
#' # Quantile function
#' plot(seq(0.01, 0.99, 0.001), quantile(x, seq(0.01, 0.99, 0.001)),
#' type = "l",
#' xlab = "p", ylab = "Quantile function", main = "The Box-Cox Type I Logistic Distribution"
#' )
#' curve(qbcloi(x, mu, sigma, lambda), add = TRUE, col = 2, lwd = 2, from = 0, to = 1)
#' legend("topleft", c("Emp. quantile function", "Theo. quantile function"),
#' col = c(1, 2), lwd = 2, lty = c(1, 1)
#' )
NULL
# Density
#' @rdname bcloi
#' @export
dbcloi <- function(x, mu, sigma, lambda, log = FALSE, ...) {
if (is.matrix(x)) d <- ncol(x) else d <- 1L
maxl <- max(c(length(x), length(mu), length(sigma), length(lambda)))
x <- rep(x, length.out = maxl)
mu <- rep(mu, length.out = maxl)
sigma <- rep(sigma, length.out = maxl)
lambda <- rep(lambda, length.out = maxl)
pmf <- rep(-Inf, maxl)
# NaN index
pmf[which(mu <= 0 | sigma <= 0)] <- NaN
# Positive density index
id1 <- which(x > 0 & lambda != 0 & !is.nan(pmf))
id2 <- which(x > 0 & lambda == 0 & !is.nan(pmf))
# Extended Box-Cox transformation
z <- rep(NaN, length.out = maxl)
z[id1] <- ((x[id1] / mu[id1])^lambda[id1] - 1) / (sigma[id1] * lambda[id1])
z[id2] <- log(x[id2] / mu[id2]) / sigma[id2]
pmf[id1] <- (lambda[id1] - 1) * log(x[id1]) + rLOI(z[id1]^2, log = TRUE) -
log(RLOI(1 / (sigma[id1] * abs(lambda[id1])))) - lambda[id1] * log(mu[id1]) - log(sigma[id1])
pmf[id2] <- rLOI(z[id2]^2, log = TRUE) - log(sigma[id2] * x[id2])
if (!log) pmf <- exp(pmf)
if (d > 1L) matrix(pmf, ncol = d) else pmf
}
## Distribution function
#' @rdname bcloi
#' @export
pbcloi <- function(q, mu, sigma, lambda, lower.tail = TRUE, ...) {
if (is.matrix(q)) d <- ncol(q) else d <- 1L
maxl <- max(c(length(q), length(mu), length(sigma), length(lambda)))
q <- rep(q, length.out = maxl)
mu <- rep(mu, length.out = maxl)
sigma <- rep(sigma, length.out = maxl)
lambda <- rep(lambda, length.out = maxl)
# Extended Box-Cox transformation
z <- rep(NaN, length.out = maxl)
id1 <- which(q > 0 & mu > 0 & sigma > 0 & lambda != 0)
id2 <- which(q > 0 & mu > 0 & sigma > 0 & lambda == 0)
z[id1] <- ((q[id1] / mu[id1])^lambda[id1] - 1) / (sigma[id1] * lambda[id1])
z[id2] <- log(q[id2] / mu[id2]) / sigma[id2]
id1 <- which(q > 0 & mu > 0 & sigma > 0 & lambda <= 0)
id2 <- which(q > 0 & mu > 0 & sigma > 0 & lambda > 0)
cdf <- rep(NaN, length.out = maxl)
cdf[id1] <- RLOI(z[id1]) / RLOI(1 / (sigma[id1] * abs(lambda[id1])))
cdf[id2] <- (RLOI(z[id2]) - RLOI(-1 / (sigma[id2] * lambda[id2]))) /
RLOI(1 / (sigma[id2] * lambda[id2]))
cdf[which(q <= 0 & mu > 0 & sigma > 0)] <- 0
if (!lower.tail) cdf <- 1 - cdf
if (d > 1L) matrix(cdf, ncol = d) else cdf
}
## Quantile function
#' @rdname bcloi
#' @export
qbcloi <- function(p, mu, sigma, lambda, lower.tail = TRUE, ...) {
if (is.matrix(p)) d <- ncol(p) else d <- 1L
maxl <- max(c(length(p), length(mu), length(sigma), length(lambda)))
p <- rep(p, length.out = maxl)
mu <- rep(mu, length.out = maxl)
sigma <- rep(sigma, length.out = maxl)
lambda <- rep(lambda, length.out = maxl)
if (!lower.tail) p <- 1 - p
qtf <- zp <- rep(NaN, length.out = maxl)
# z_p
id1 <- which(p > 0 & p < 1 & mu > 0 & sigma > 0 & lambda <= 0)
id2 <- which(p > 0 & p < 1 & mu > 0 & sigma > 0 & lambda > 0)
zp[id1] <- qLOI(p[id1] * RLOI(1 / (sigma[id1] * abs(lambda[id1]))))
zp[id2] <- qLOI(1 - (1 - p[id2]) * RLOI(1 / (sigma[id2] * abs(lambda[id2]))))
# Quantile function
id1 <- which(p > 0 & p < 1 & mu > 0 & sigma > 0 & lambda != 0)
id2 <- which(p > 0 & p < 1 & mu > 0 & sigma > 0 & lambda == 0)
id3 <- which(p == 0 & mu > 0 & sigma > 0)
id4 <- which(p == 1 & mu > 0 & sigma > 0)
qtf[id1] <- exp(log(mu[id1]) + (1 / lambda[id1]) * log1p(sigma[id1] * lambda[id1] * zp[id1]))
qtf[id2] <- exp(log(mu[id2]) + sigma[id2] * zp[id2])
qtf[id3] <- 0
qtf[id4] <- Inf
if (d > 1L) matrix(qtf, ncol = d) else qtf
}
# Random generation
#' @rdname bcloi
#' @export
rbcloi <- function(n, mu, sigma, lambda) {
u <- stats::runif(n)
qbcloi(u, mu, sigma, lambda)
}
# BCS class
bcloi <- function(x) {
out <- list()
# Abbreviation
out$abb <- "bcloi"
# Name
out$name <- "Box-Cox Type-I Logistic"
# Number of parameters
out$npar <- 3
# Extra parameter
out$extrap <- FALSE
# Initial values -------------------------------------------------------------
out$start <- function(x) {
n <- length(x)
gamlss_fit <- suppressWarnings(try(gamlss::gamlss(x ~ 1, family = gamlss.dist::BCCG(mu.link = "log"), trace = FALSE), silent = TRUE))
if (unique(grepl("Error", gamlss_fit))) {
convergence <- FALSE
} else {
convergence <- gamlss_fit$converged
}
if (convergence) {
c(exp(stats::coef(gamlss_fit, "mu")),
exp(stats::coef(gamlss_fit, "sigma")),
stats::coef(gamlss_fit, "nu"))
} else {
CV <- 0.75 * (stats::quantile(x, 0.75) - stats::quantile(x, 0.25)) / stats::median(x)
c(stats::median(x), asinh(CV / 1.5) * stats::qlogis(0.75), 0L)
}
}
structure(out, class = "bcs")
}
# The log-type I logistic distribution -------------------------------------------------------------
#' @name lloi
#'
#' @title The Log-Type I Logistic Distribution
#'
#' @description Density, distribution function, quantile function, and random
#' generation for the log-type I logistic distribution with parameters \code{mu} and
#' \code{sigma}.
#'
#' @param x,q vector of positive quantiles.
#' @param p vector of probabilities.
#' @param n number of random values to return.
#' @param mu vector of strictly positive scale parameters.
#' @param sigma vector of strictly positive relative dispersion parameters.
#' @param lower.tail logical; if \code{TRUE} (default), probabilities are
#' \code{P[X <= x]}, otherwise, \code{P[X > x]}.
#' @param log logical; if \code{TRUE}, probabilities \code{p} are given as \code{log(p)}.
#' @param ... further arguments.
#'
#' @details A random variable X has a log-type I logistic distribution with parameter \code{mu} and
#' \code{sigma} if log(X) follows a type I logistic distribution with location parameter \code{log(mu)}
#' and dispersion parameter \code{sigma}. It can be showed that \code{mu} is the median of X.
#'
#' @return \code{dlloi} returns the density, \code{plloi} gives the distribution
#' function, \code{qlloi} gives the quantile function, and \code{rlloi}
#' generates random observations.
#'
#' Invalid arguments will result in return value \code{NaN}.
#'
#' The length of the result is determined by \code{n} for \code{rlloi}, and is the
#' maximum of the lengths of the numerical arguments for the other functions.
#'
#' @references Vanegas, L. H., and Paula, G. A. (2016). Log-symmetric distributions: statistical
#' properties and parameter estimation. \emph{Brazilian Journal of Probability and Statistics}, 30, 196-220.
#'
#' @author Rodrigo M. R. de Medeiros <\email{rodrigo.matheus@live.com}>
#'
#' @examples
#' mu <- 5
#' sigma <- 1
#'
#' # Sample generation
#' x <- rlloi(1000, mu, sigma)
#'
#' # Density
#' hist(x, prob = TRUE, main = "The Log-Type I Logistic Distribution", col = "white")
#' curve(dlloi(x, mu, sigma), add = TRUE, col = 2, lwd = 2)
#' legend("topright", "Probability density function", col = 2, lwd = 2, lty = 1)
#'
#' # Distribution function
#' plot(ecdf(x), main = "The Log-Type I Logistic Distribution", ylab = "Distribution function")
#' curve(plloi(x, mu, sigma), add = TRUE, col = 2, lwd = 2)
#' legend("bottomright", c("Emp. distribution function", "Theo. distribution function"),
#' col = c(1, 2), lwd = 2, lty = c(1, 1)
#' )
#'
#' # Quantile function
#' plot(seq(0.01, 0.99, 0.001), quantile(x, seq(0.01, 0.99, 0.001)),
#' type = "l",
#' xlab = "p", ylab = "Quantile function", main = "The Log-Type I Logistic Distribution"
#' )
#' curve(qlloi(x, mu, sigma), add = TRUE, col = 2, lwd = 2, from = 0, to = 1)
#' legend("topleft", c("Emp. quantile function", "Theo. quantile function"),
#' col = c(1, 2), lwd = 2, lty = c(1, 1)
#' )
NULL
# Density
#' @rdname lloi
#' @export
dlloi <- function(x, mu, sigma, log = FALSE, ...) {
if (is.matrix(x)) d <- ncol(x) else d <- 1L
maxl <- max(c(length(x), length(mu), length(sigma)))
x <- rep(x, length.out = maxl)
mu <- rep(mu, length.out = maxl)
sigma <- rep(sigma, length.out = maxl)
pmf <- rep(-Inf, maxl)
# NaN index
pmf[which(mu <= 0 | sigma <= 0)] <- NaN
# Positive density index
id <- which(x > 0 & !is.nan(pmf))
# Transformed variables
z <- rep(NaN, length.out = maxl)
z[id] <- log(x[id] / mu[id]) / sigma[id]
pmf[id] <- rLOI(z[id]^2, log = TRUE) - log(sigma[id] * x[id])
if (!log) pmf <- exp(pmf)
if (d > 1L) matrix(pmf, ncol = d) else pmf
}
## Distribution function
#' @rdname lloi
#' @export
plloi <- function(q, mu, sigma, lower.tail = TRUE, ...) {
if (is.matrix(q)) d <- ncol(q) else d <- 1L
maxl <- max(c(length(q), length(mu), length(sigma)))
q <- rep(q, length.out = maxl)
mu <- rep(mu, length.out = maxl)
sigma <- rep(sigma, length.out = maxl)
# Transformed variables
z <- rep(NaN, length.out = maxl)
id <- which(q > 0 & mu > 0 & sigma > 0)
z[id] <- log(q[id] / mu[id]) / sigma[id]
cdf <- rep(NaN, length.out = maxl)
cdf[id] <- RLOI(z[id])
cdf[which(q <= 0 & mu > 0 & sigma > 0)] <- 0
if (!lower.tail) cdf <- 1 - cdf
if (d > 1L) matrix(cdf, ncol = d) else cdf
}
## Quantile function
#' @rdname lloi
#' @export
qlloi <- function(p, mu, sigma, lower.tail = TRUE, ...) {
if (is.matrix(p)) d <- ncol(p) else d <- 1L
maxl <- max(c(length(p), length(mu), length(sigma)))
p <- rep(p, length.out = maxl)
mu <- rep(mu, length.out = maxl)
sigma <- rep(sigma, length.out = maxl)
if (!lower.tail) p <- 1 - p
qtf <- zp <- rep(NaN, length.out = maxl)
# z_p
id <- which(p > 0 & p < 1 & mu > 0 & sigma > 0)
zp[id] <- qLOI(p[id])
# Quantile function
id1 <- which(p > 0 & p < 1 & mu > 0 & sigma > 0)
id2 <- which(p == 0 & mu > 0 & sigma > 0)
id3 <- which(p == 1 & mu > 0 & sigma > 0)
qtf[id1] <- exp(log(mu[id1]) + sigma[id1] * zp[id1])
qtf[id2] <- 0
qtf[id3] <- Inf
if (d > 1L) matrix(qtf, ncol = d) else qtf
}
# Random generation
#' @rdname lloi
#' @export
rlloi <- function(n, mu, sigma) {
u <- stats::runif(n)
exp(log(mu) + sigma * qLOI(u))
}
# BCS class
lloi <- function(x) {
out <- list()
# Abbreviation
out$abb <- "lloi"
# Name
out$name <- "Log-Type I Logistic"
# Number of parameters
out$npar <- 2
# Extra parameter
out$extrap <- FALSE
# Initial values -------------------------------------------------------------
out$start <- function(x) {
n <- length(x)
gamlss_fit <- suppressWarnings(try(gamlss::gamlss(x ~ 1, family = gamlss.dist::BCCG(mu.link = "log"),
trace = FALSE, nu.fix = TRUE, nu.start = 0L), silent = TRUE))
if (unique(grepl("Error", gamlss_fit))) {
convergence <- FALSE
} else {
convergence <- gamlss_fit$converged
}
if (convergence) {
c(exp(stats::coef(gamlss_fit, "mu")),
exp(stats::coef(gamlss_fit, "sigma")))
} else {
CV <- 0.75 * (stats::quantile(x, 0.75) - stats::quantile(x, 0.25)) / stats::median(x)
c(stats::median(x), asinh(CV / 1.5) * stats::qlogis(0.75))
}
}
structure(out, class = "bcs")
}
# The standard type I logistic distribution --------------------------------------------------------
## Density generating function
rLOI <- function(u, log = FALSE) {
n <- length(u)
pmf <- rep(-Inf, length.out = n)
id <- which(u >= 0)
const <- 1.484300029
pmf[id] <- log(const) - u[id] - log((1 + exp(-u[id]))^2)
if (!log) pmf <- exp(pmf)
pmf
}
Wloi <- distr::AbscontDistribution(
d = function(x) rLOI(x^2),
Symmetry = distr::SphericalSymmetry(0)
)
RLOI <- function(q) {
n <- length(q)
cdf <- rep(0, length.out = n)
id1 <- which(is.finite(q) & q != 0)
id2 <- which(q == 0)
id3 <- which(q == -Inf)
id4 <- which(q == Inf)
cdf[id1] <- distr::p(Wloi)(q[id1])
# cdf[id1] <- loiCDF(q[id1])
cdf[id2] <- 0.5
cdf[id3] <- 0
cdf[id4] <- 1
cdf
}
# Quantile function
qLOI <- function(p) {
if (any(p < 0 | p > 1)) {
stop("p must lie between 0 and 1\n")
}
n <- length(p)
qtf <- rep(NA, n)
# Positive density index
id1 <- which(p != 0.5 & p > 0 & p < 1)
id2 <- which(p == 0)
id3 <- which(p == 0.5)
id4 <- which(p == 1)
qtf[id1] <- distr::q(Wloi)(p[id1])
# qtf[id1] <- loiQuantile(p[id1])
qtf[id2] <- -Inf
qtf[id3] <- 0
qtf[id4] <- Inf
qtf
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.