bcloii | R Documentation |
Density, distribution function, quantile function, and random
generation for the Box-Cox type II logistic distribution with parameters mu
,
sigma
, and lambda
.
dbcloii(x, mu, sigma, lambda, log = FALSE, ...)
pbcloii(q, mu, sigma, lambda, lower.tail = TRUE, ...)
qbcloii(p, mu, sigma, lambda, lower.tail = TRUE, ...)
rbcloii(n, mu, sigma, lambda)
x, q |
vector of positive quantiles. |
mu |
vector of strictly positive scale parameters. |
sigma |
vector of strictly positive relative dispersion parameters. |
lambda |
vector of real-valued skewness parameters. If |
log |
logical; if |
... |
further arguments. |
lower.tail |
logical; if |
p |
vector of probabilities. |
n |
number of random values to return. |
dbcloii
returns the density, pbcloii
gives the distribution function,
qbcloii
gives the quantile function, and rbcloii
generates random observations.
Invalid arguments will result in return value NaN
, with an warning.
The length of the result is determined by n
for rbcloii
, and is the
maximum of the lengths of the numerical arguments for the other functions.
Rodrigo M. R. de Medeiros <rodrigo.matheus@live.com>
Ferrari, S. L. P., and Fumes, G. (2017). Box-Cox symmetric distributions and applications to nutritional data. AStA Advances in Statistical Analysis, 101, 321-344.
Vanegas, L. H., and Paula, G. A. (2016). Log-symmetric distributions: statistical properties and parameter estimation. Brazilian Journal of Probability and Statistics, 30, 196-220.
mu <- 8
sigma <- 1
lambda <- 2
# Sample generation
x <- rbcloii(10000, mu, sigma, lambda)
# Density
hist(x, prob = TRUE, main = "The Box-Cox Type II Logistic Distribution", col = "white")
curve(dbcloii(x, mu, sigma, lambda), add = TRUE, col = 2, lwd = 2)
legend("topright", "Probability density function", col = 2, lwd = 2, lty = 1)
# Distribution function
plot(ecdf(x), main = "The Box-Cox Type II Logistic Distribution", ylab = "Distribution function")
curve(pbcloii(x, mu, sigma, lambda), add = TRUE, col = 2, lwd = 2)
legend("bottomright", c("Emp. distribution function", "Theo. distribution function"),
col = c(1, 2), lwd = 2, lty = c(1, 1)
)
# Quantile function
plot(seq(0.01, 0.99, 0.001), quantile(x, seq(0.01, 0.99, 0.001)),
type = "l",
xlab = "p", ylab = "Quantile function", main = "The Box-Cox Type II Logistic Distribution"
)
curve(qbcloii(x, mu, sigma, lambda), add = TRUE, col = 2, lwd = 2, from = 0, to = 1)
legend("topleft", c("Emp. quantile function", "Theo. quantile function"),
col = c(1, 2), lwd = 2, lty = c(1, 1)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.