| bcpe | R Documentation |
Density, distribution function, quantile function, and random
generation for the Box-Cox power exponential distribution with parameters mu,
sigma, lambda, and nu.
dbcpe(x, mu, sigma, lambda, nu, log = FALSE)
pbcpe(q, mu, sigma, lambda, nu, lower.tail = TRUE)
qbcpe(p, mu, sigma, lambda, nu, lower.tail = TRUE)
rbcpe(n, mu, sigma, lambda, nu)
x, q |
vector of positive quantiles. |
mu |
vector of strictly positive scale parameters. |
sigma |
vector of strictly positive relative dispersion parameters. |
lambda |
vector of real-valued skewness parameters. If |
nu |
strictly positive heavy-tailedness parameter. |
log |
logical; if |
lower.tail |
logical; if |
p |
vector of probabilities. |
n |
number of random values to return. |
dbcpe returns the density, pbcpe gives the distribution function,
qbcpe gives the quantile function, and rbcpe generates random observations.
Invalid arguments will result in return value NaN, with an warning.
The length of the result is determined by n for rbcpe, and is the
maximum of the lengths of the numerical arguments for the other functions.
Rodrigo M. R. de Medeiros <rodrigo.matheus@live.com>
Rigby, R. A., and Stasinopoulos, D. M. (2004). Smooth centile curves for skew and kurtotic data modelled using the Box-Cox power exponential distribution. Statistics in medicine, 23, 3053-3076.
Vanegas, L. H., and Paula, G. A. (2016). Log-symmetric distributions: statistical properties and parameter estimation. Brazilian Journal of Probability and Statistics, 30, 196-220.
Ferrari, S. L. P., and Fumes, G. (2017). Box-Cox symmetric distributions and applications to nutritional data. AStA Advances in Statistical Analysis, 101, 321-344.
mu <- 8
sigma <- 1
lambda <- 2
nu <- 4
# Sample generation
x <- rbcpe(10000, mu, sigma, lambda, nu)
# Density
hist(x, prob = TRUE, main = "The Box-Cox Power Exponential Distribution", col = "white")
curve(dbcpe(x, mu, sigma, lambda, nu), add = TRUE, col = 2, lwd = 2)
legend("topleft", "Probability density function", col = 2, lwd = 2, lty = 1)
# Distribution function
plot(ecdf(x), main = "The Box-Cox Power Exponential Distribution", ylab = "Distribution function")
curve(pbcpe(x, mu, sigma, lambda, nu), add = TRUE, col = 2, lwd = 2)
legend("topleft", c("Emp. distribution function", "Theo. distribution function"),
col = c(1, 2), lwd = 2, lty = c(1, 1)
)
# Quantile function
plot(seq(0.01, 0.99, 0.001), quantile(x, seq(0.01, 0.99, 0.001)),
type = "l",
xlab = "p", ylab = "Quantile function", main = "The Box-Cox Power Exponential Distribution"
)
curve(qbcpe(x, mu, sigma, lambda, nu), add = TRUE, col = 2, lwd = 2, from = 0, to = 1)
legend("topleft", c("Emp. quantile function", "Theo. quantile function"),
col = c(1, 2), lwd = 2, lty = c(1, 1)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.