NMFStrategy-class: Virtual Interface for NMF Algorithms

Description Usage Arguments Functions Slots Methods (by generic) Examples

Description

This class partially implements the generic interface defined for general algorithms defined in the NMF package (see algorithmic-NMF).

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
## S4 method for signature 'NMFStrategy'
show(object)

## S4 method for signature 'NMFStrategy,mMatrix,NMFfit'
run(object, y, x, ...)

## S4 method for signature 'NMFStrategy,mMatrix,NMF'
run(object, y, x, ...)

## S4 method for signature 'NMFStrategy'
objective(object)

## S4 replacement method for signature 'NMFStrategy,character'
objective(object) <- value

## S4 replacement method for signature 'NMFStrategy,'function''
objective(object) <- value

## S4 method for signature 'NMFStrategy'
modelname(object)

is.mixed(object)

## S3 method for class 'NMFStrategy'
nmfFormals(x, ...)

Arguments

y

the target data that we want to approximate, passed as a matrix(-like) object.

x

an NMFfit object used as a starting point/seed by the algorithm.

Functions

Slots

objective

the objective function associated with the algorithm (Frobenius, Kullback-Leibler, etc...). It is either an access key of a registered objective function or a function definition. In the latter case, the given function must have the following signature (x="NMF", y="matrix") and return a nonnegative real value.

model

a character string giving either the (sub)class name of the NMF-class instance used and returned by the strategy, or a function name.

mixed

a logical that indicates if the algorithm works on mixed-sign data.

Methods (by generic)

canFit:

deviance:

modelname:

nmfFormals:

NMFStrategy:

objective:

objective<-:

run:

Examples

1
2
3
4
# get the type of model(s) associated with an NMF algorithm
modelname( nmfAlgorithm('brunet') )
modelname( nmfAlgorithm('nsNMF') )
modelname( nmfAlgorithm('offset') )

renozao/NMF documentation built on June 14, 2020, 9:35 p.m.