oRes<-function(data.On, optParam, pknList){
#nG is the number of generations
#number of models within tolerance
nM<-rep(NA, nG(optParam))
#number of drugs (not conditions! a condition can contain >1 drug)
nDrugs<-sum(unlist(lapply(dataBC(data.On), length)))
#score of best model of generation, by drug
sM<-matrix(NA, ncol=nDrugs, nrow=nG(optParam))
#average score of generation, by drug
sM.avg<-matrix(NA, ncol=nDrugs, nrow=nG(optParam))
#total scores of all models, at each generation
sAll<-matrix(NA, nrow=nG(optParam), ncol=nScripts(optParam)*nG1(optParam))
#size of all models at each generation
Msize<-matrix(NA, nrow=nG(optParam), ncol=nScripts(optParam)*nG1(optParam))
#size of best model
BMGsize<-rep(NA, nG(optParam))
#total score of best model, with size penalty
BM.s<-rep(NA, nG(optParam))
#freq of each edge in the generation
FE<-matrix(NA, ncol=nG(optParam), nrow=dim(interactions(pknList))[1])
rownames(FE)<-interactions(pknList)[,"SID"]
#none probability at each generation, for all integrator nodes
intgNone<-matrix(NA, ncol=nG(optParam), nrow=length(integrators(pknList)))
rownames(intgNone)<-integrators(pknList)
#and probability at each generation, for all integrator nodes
intgAnd<-matrix(NA, ncol=nG(optParam), nrow=length(integrators(pknList)))
rownames(intgAnd)<-integrators(pknList)
for(i in 1:nG(optParam)){
load(paste("Results_",resN(optParam),"/G",i,"cResults_",resN(optParam),".RData", sep=""))
BMGsize[i]<-dim(c.modelsG1[[which(c.scoresG1 == min(c.scoresG1))[1]]])[1]
Msize[i,]<-unlist(lapply(c.modelsG1, function(x){return(dim(x)[1])}))
if(tol(optParam) < 1){
b<-(min(c.scoresG1, na.rm=TRUE)+tol(optParam)*abs(min(c.scoresG1, na.rm=TRUE)))
}else{
b<-min(c.scoresG1, na.rm=TRUE)+tol(optParam)
}
nM[i]<-length(which(c.scoresG1 < b))
BM.s[i]<-min(c.scoresG1)
sM[i,]<-unlist(c.scoresG1.list[[which(c.scoresG1 == min(c.scoresG1))[1]]])
tempList<-lapply(c.scoresG1.list, unlist)
for(j in 1:nDrugs){
sM.avg[i,j]<-mean(unlist(lapply(tempList, function(x){return(x[j])})), na.rm=TRUE)
}
sAll[i,]<-c.scoresG1
sAll[i,]<-c.scoresG1
SIDsG<-lapply(c.modelsG1, function(x){return(unique(x$SID))})
SIDsG<-unlist(SIDsG)
SIDsG<-table(SIDsG)
FE[names(SIDsG),i]<-SIDsG
for(j in 1:length(integrators(pknList))){
In<-lapply(c.modelsG1, function(x){integrators(pknList)[j] %in% x$S.cc})
And<-lapply(c.modelsG1, function(x){return(length(which(x$S.cc == integrators(pknList)[j])) > 1) })
intgNone[j,i]<-sum(!unlist(In))
intgAnd[j,i]<-sum(unlist(And))
}
}
load(paste("Results_",resN(optParam),"/G1output.RData", sep=""))
G1.freq<-interactions(pknList)[,"ntag"]
G1.flipP<-FlipP
G1.AndBinF<-AndBinF
G1.NoneBinF<-NoneBinF
for(i in 2:nG(optParam)){
load(file=paste("Results_", resN(optParam),"/G",i,"output.RData",sep=""))
G1.freq<-cbind(G1.freq, interactions(pknList)[,"ntag"])
G1.flipP<-cbind(G1.flipP,FlipP)
G1.AndBinF<-cbind(G1.AndBinF,AndBinF)
G1.NoneBinF<-cbind(G1.NoneBinF,NoneBinF)
}
return(list(nM=nM, sM=sM, sM.avg=sM.avg, sAll=sAll, Msize=Msize, BMGsize=BMGsize,
BM.s=BM.s,FE=FE,intgNone=intgNone, intgAnd=intgAnd,
G1.freq=G1.freq, G1.flipP=G1.flipP, G1.AndBinF=G1.AndBinF, G1.noneBinF=G1.NoneBinF))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.