# Tests for functions dependent on a seurat object
set.seed(42)
pbmc.file <- system.file('extdata', 'pbmc_raw.txt', package = 'Seurat')
pbmc.test <- as.sparse(x = as.matrix(read.table(pbmc.file, sep = "\t", row.names = 1)))
# Tests for object creation (via CreateSeuratObject)
# --------------------------------------------------------------------------------
context("Object creation")
fake.meta.data <- data.frame(rep(1, ncol(pbmc.test)))
rownames(fake.meta.data) <- colnames(pbmc.test)
colnames(fake.meta.data) <- "FMD"
object <- CreateSeuratObject(counts = pbmc.test,
meta.data = fake.meta.data)
test_that("object initialization actually creates seurat object", {
expect_is(object, "Seurat")
})
#this should be moved to seurat object
# test_that("meta.data slot generated correctly", {
# expect_equal(dim(object[[]]), c(80, 4))
# expect_equal(colnames(object[[]]), c("orig.ident", "nCount_RNA", "nFeature_RNA", "FMD"))
# expect_equal(rownames(object[[]]), colnames(object))
# expect_equal(object[["nFeature_RNA"]][1:5, ], c(47, 52, 50, 56, 53))
# expect_equal(object[["nCount_RNA"]][75:80, ], c(228, 527, 202, 157, 150, 233))
# })
object.filtered <- CreateSeuratObject(
counts = pbmc.test,
min.cells = 10,
min.features = 30
)
test_that("Filtering handled properly", {
expect_equal(nrow(x = LayerData(object = object.filtered, layer = "counts")), 163)
expect_equal(ncol(x = LayerData(object = object.filtered, layer = "counts")), 77)
})
#this should be moved to seurat object
# test_that("Metadata check errors correctly", {
# pbmc.md <- pbmc_small[[]]
# pbmc.md.norownames <- as.matrix(pbmc.md)
# rownames(pbmc.md.norownames) <- NULL
# expect_error(CreateSeuratObject(counts = pbmc.test, meta.data = pbmc.md.norownames),
# "Row names not set in metadata. Please ensure that rownames of metadata match column names of data matrix")
# })
# Tests for NormalizeData
# --------------------------------------------------------------------------------
context("NormalizeData")
test_that("NormalizeData error handling", {
expect_error(NormalizeData(object = object, assay = "FAKE"))
expect_equal(
object = LayerData(
object = NormalizeData(
object = object,
normalization.method = NULL,
verbose = FALSE
),
layer = "data"
),
expected = LayerData(object = object, layer = "counts")
)
})
object <- NormalizeData(object = object, verbose = FALSE, scale.factor = 1e6)
test_that("NormalizeData scales properly", {
expect_equal(LayerData(object = object, layer = "data")[2, 1], 9.567085, tolerance = 1e-6)
expect_equal(LayerData(object = object, layer = "data")[161, 55], 8.415309, tolerance = 1e-6)
expect_equal(Command(object = object, command = "NormalizeData.RNA", value = "scale.factor"), 1e6)
expect_equal(Command(object = object, command = "NormalizeData.RNA", value = "normalization.method"), "LogNormalize")
})
normalized.data <- LogNormalize(data = GetAssayData(object = object[["RNA"]], layer = "counts"), verbose = FALSE)
test_that("LogNormalize normalizes properly", {
expect_equal(
as.matrix(LogNormalize(data = GetAssayData(object = object[["RNA"]], layer = "counts"), verbose = FALSE)),
as.matrix(LogNormalize(data = as.data.frame(as.matrix(GetAssayData(object = object[["RNA"]], layer = "counts"))), verbose = FALSE))
)
})
clr.counts <- NormalizeData(object = pbmc.test, normalization.method = "CLR", verbose = FALSE)
test_that("CLR normalization returns expected values", {
expect_equal(dim(clr.counts), c(dim(pbmc.test)))
expect_equal(clr.counts[2, 1], 0.5517828, tolerance = 1e-6)
expect_equal(clr.counts[228, 76], 0.5971381, tolerance = 1e-6)
expect_equal(clr.counts[230, 80], 0)
})
rc.counts <- NormalizeData(object = pbmc.test, normalization.method = "RC", verbose = FALSE)
test_that("Relative count normalization returns expected values", {
expect_equal(rc.counts[2, 1], 142.8571, tolerance = 1e-6)
expect_equal(rc.counts[228, 76], 18.97533, tolerance = 1e-6)
expect_equal(rc.counts[230, 80], 0)
rc.counts <- NormalizeData(object = pbmc.test, normalization.method = "RC", verbose = FALSE, scale.factor = 1e6)
expect_equal(rc.counts[2, 1], 14285.71, tolerance = 1e-6)
})
# Tests for v5 NormalizeData
# --------------------------------------------------------------------------------
context("v5 NormalizeData")
if(class(object[['RNA']]) == "Assay5") {
fake.groups <- c(rep(1, floor(ncol(pbmc.test)/2)),
rep(2, ncol(pbmc.test) - (floor(ncol(pbmc.test)/2))) )
object$groups <- fake.groups
object.split <- CreateSeuratObject(split(object[["RNA"]], f = object$groups))
object.split <- NormalizeData(object = object.split)
group1 <- subset(object, groups==1)
group1 <- NormalizeData(group1)
test_that("Normalization is performed for each layer", {
expect_equal(Layers(object.split),c("counts.1", "counts.2", "data.1", "data.2"))
expect_equal(group1[['RNA']]$data, LayerData(object.split, layer="data.1"))
})
object.split <- NormalizeData(object = object.split, normalization.method = "CLR", verbose = FALSE)
group1 <- NormalizeData(object = group1, normalization.method = "CLR", verbose = FALSE)
test_that("CLR normalization works with multiple layers", {
expect_equal(Layers(object.split),c("counts.1", "counts.2", "data.1", "data.2"))
expect_equal(group1[['RNA']]$data, LayerData(object.split, layer="data.1"))
})
object.split <- NormalizeData(object = object.split, normalization.method = "RC", verbose = FALSE)
group1 <- NormalizeData(object = group1, normalization.method = "RC", verbose = FALSE)
test_that("RC normalization works with multiple layers", {
expect_equal(Layers(object.split),c("counts.1", "counts.2", "data.1", "data.2"))
expect_equal(group1[['RNA']]$data, LayerData(object.split, layer="data.1"))
})
}
test_that("NormalizeData scales properly for BPcells", {
# Tests for BPCells NormalizeData
# --------------------------------------------------------------------------------
skip_on_cran()
library(Matrix)
skip_if_not_installed("BPCells")
library(BPCells)
mat_bpcells <- t(as(t(object[['RNA']]$counts ), "IterableMatrix"))
object[['RNAbp']] <- CreateAssay5Object(counts = mat_bpcells)
object <- NormalizeData(object = object, verbose = FALSE, scale.factor = 1e6, assay = "RNAbp")
object <- NormalizeData(object = object, verbose = FALSE, scale.factor = 1e6, assay = "RNA")
expect_equal(as.matrix(object[['RNAbp']]$data), as.matrix(object[['RNA']]$data), tolerance = 1e-6)
expect_equal(Command(object = object, command = "NormalizeData.RNAbp", value = "scale.factor"), 1e6)
expect_equal(Command(object = object, command = "NormalizeData.RNAbp", value = "normalization.method"), "LogNormalize")
})
test_that("LogNormalize normalizes properly for BPCells", {
skip_on_cran()
library(Matrix)
skip_if_not_installed("BPCells")
library(BPCells)
mat_bpcells <- t(as(t(object[['RNA']]$counts ), "IterableMatrix"))
object[['RNAbp']] <- CreateAssay5Object(counts = mat_bpcells)
object <- NormalizeData(object = object, verbose = FALSE, scale.factor = 1e6, assay = "RNAbp")
object <- NormalizeData(object = object, verbose = FALSE, scale.factor = 1e6, assay = "RNA")
normalized.data.bp <- LogNormalize(data = GetAssayData(object = object[["RNAbp"]], layer = "counts"), verbose = FALSE)
normalized.data <- LogNormalize(data = GetAssayData(object = object[["RNA"]], layer = "counts"), verbose = FALSE)
expect_equal(
as.matrix(normalized.data.bp),
as.matrix(normalized.data),
tolerance = 1e-6
)
})
# Tests for ScaleData
# --------------------------------------------------------------------------------
context("ScaleData")
object <- ScaleData(object, verbose = FALSE)
test_that("ScaleData returns expected values when input is a sparse matrix", {
expect_equal(GetAssayData(object = object[["RNA"]], layer = "scale.data")[1, 1], -0.4148587, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], layer = "scale.data")[75, 25], -0.2562305, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], layer = "scale.data")[162, 59], -0.4363939, tolerance = 1e-6)
})
new.data <- as.matrix(GetAssayData(object = object[["RNA"]], layer = "data"))
new.data[1, ] <- rep(x = 0, times = ncol(x = new.data))
object2 <- object
object2 <- SetAssayData(
object = object,
assay = "RNA",
slot = "data",
new.data = new.data
)
object2 <- ScaleData(object = object2, verbose = FALSE)
object <- ScaleData(object = object, verbose = FALSE)
test_that("ScaleData returns expected values when input is not sparse", {
expect_equal(GetAssayData(object = object[["RNA"]], layer = "scale.data")[75, 25], -0.2562305, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], layer = "scale.data")[162, 59], -0.4363939, tolerance = 1e-6)
})
test_that("ScaleData handles zero variance features properly", {
expect_equal(GetAssayData(object = object2[["RNA"]], layer = "scale.data")[1, 1], 0)
expect_equal(GetAssayData(object = object2[["RNA"]], layer = "scale.data")[1, 80], 0)
})
ng1 <- rep(x = "g1", times = round(x = ncol(x = object) / 2))
object$group <- c(ng1, rep(x = "g2", times = ncol(x = object) - length(x = ng1)))
g1 <- subset(x = object, group == "g1")
g1 <- ScaleData(object = g1, features = rownames(x = g1), verbose = FALSE)
g2 <- subset(x = object, group == "g2")
g2 <- ScaleData(object = g2, features = rownames(x = g2), verbose = FALSE)
object <- ScaleData(object = object, features = rownames(x = object), verbose = FALSE, split.by = "group")
#move to SeuratObject
# test_that("split.by option works", {
# expect_equal(GetAssayData(object = object, layer = "scale.data")[, Cells(x = g1)],
# GetAssayData(object = g1, layer = "scale.data"))
# expect_equal(GetAssayData(object = object, layer = "scale.data")[, Cells(x = g2)],
# GetAssayData(object = g2, layer = "scale.data"))
# })
g1 <- ScaleData(object = g1, features = rownames(x = g1), vars.to.regress = "nCount_RNA", verbose = FALSE)
g2 <- ScaleData(object = g2, features = rownames(x = g2), vars.to.regress = "nCount_RNA", verbose = FALSE)
object <- ScaleData(object = object, features = rownames(x = object), verbose = FALSE, split.by = "group", vars.to.regress = "nCount_RNA")
test_that("split.by option works with regression", {
expect_equal(LayerData(object = object, layer = "scale.data")[, Cells(x = g1)],
LayerData(object = g1, layer = "scale.data"))
expect_equal(LayerData(object = object, layer = "scale.data")[, Cells(x = g2)],
LayerData(object = g2, layer = "scale.data"))
})
# Tests for various regression techniques
context("Regression")
suppressWarnings({
object <- ScaleData(
object = object,
vars.to.regress = "nCount_RNA",
features = rownames(x = object)[1:10],
verbose = FALSE,
model.use = "linear")
})
test_that("Linear regression works as expected", {
expect_equal(dim(x = GetAssayData(object = object[["RNA"]], layer = "scale.data")), c(10, 80))
expect_equal(GetAssayData(object = object[["RNA"]], layer = "scale.data")[1, 1], -0.6436435, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], layer = "scale.data")[5, 25], -0.09035383, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], layer = "scale.data")[10, 80], -0.2723782, tolerance = 1e-6)
})
object <- ScaleData(
object,
vars.to.regress = "nCount_RNA",
features = rownames(x = object)[1:10],
verbose = FALSE,
model.use = "negbinom")
test_that("Negative binomial regression works as expected", {
expect_equal(dim(x = GetAssayData(object = object[["RNA"]], layer = "scale.data")), c(10, 80))
expect_equal(GetAssayData(object = object[["RNA"]], layer = "scale.data")[1, 1], -0.5888811, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], layer = "scale.data")[5, 25], -0.2553394, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], layer = "scale.data")[10, 80], -0.1921429, tolerance = 1e-6)
})
test_that("Regression error handling checks out", {
expect_error(ScaleData(object, vars.to.regress = "nCount_RNA", model.use = "not.a.model", verbose = FALSE))
})
object <- ScaleData(
object,
vars.to.regress = "nCount_RNA",
features = rownames(x = object)[1:10],
verbose = FALSE,
model.use = "poisson")
test_that("Poisson regression works as expected", {
expect_equal(dim(x = GetAssayData(object = object[["RNA"]], layer = "scale.data")), c(10, 80))
expect_equal(GetAssayData(object = object[["RNA"]], layer = "scale.data")[1, 1], -1.011717, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], layer = "scale.data")[5, 25], 0.05575307, tolerance = 1e-6)
expect_equal(GetAssayData(object = object[["RNA"]], layer = "scale.data")[10, 80], -0.1662119, tolerance = 1e-6)
})
#Tests for SampleUMI
#--------------------------------------------------------------------------------
context("SampleUMI")
downsampled.umis <- SampleUMI(
data = LayerData(object = object, layer = "counts"),
max.umi = 100,
verbose = FALSE
)
downsampled.umis.p.cell <- SampleUMI(
data = LayerData(object = object, layer = "counts"),
max.umi = seq(50, 1640, 20),
verbose = FALSE,
upsample = TRUE
)
test_that("SampleUMI gives reasonable downsampled/upsampled UMI counts", {
expect_true(!any(colSums(x = downsampled.umis) < 30, colSums(x = downsampled.umis) > 120))
expect_error(SampleUMI(data = LayerData(object = object, layer = "counts"), max.umi = rep(1, 5)))
expect_true(!is.unsorted(x = colSums(x = downsampled.umis.p.cell)))
expect_error(SampleUMI(
data = LayerData(object = object, layer = "counts"),
max.umi = seq(50, 900, 10),
verbose = FALSE,
upsample = TRUE
))
})
# Tests for FindVariableFeatures
# --------------------------------------------------------------------------------
context("FindVariableFeatures")
object <- FindVariableFeatures(object = object, selection.method = "mean.var.plot", verbose = FALSE)
test_that("mean.var.plot selection option returns expected values", {
expect_equal(VariableFeatures(object = object)[1:4], c("PTGDR", "SATB1", "ZNF330", "S100B"))
expect_equal(length(x = VariableFeatures(object = object)), 20)
hvf_info <- HVFInfo(object = object[["RNA"]], method = 'mvp')
expect_equal(hvf_info[[grep("mean$", colnames(hvf_info), value = TRUE)]][1:2], c(8.328927, 8.444462), tolerance = 1e-6)
expect_equal(hvf_info[[grep("dispersion$", colnames(hvf_info), value = TRUE)]][1:2], c(10.552507, 10.088223), tolerance = 1e-6)
expect_equal(as.numeric(hvf_info[[grep("dispersion.scaled$", colnames(hvf_info), value = TRUE)]][1:2]), c(0.1113214, -0.1332181523), tolerance = 1e-6)
})
object <- FindVariableFeatures(object, selection.method = "dispersion", verbose = FALSE)
test_that("dispersion selection option returns expected values", {
expect_equal(VariableFeatures(object = object)[1:4], c("PCMT1", "PPBP", "LYAR", "VDAC3"))
expect_equal(length(x = VariableFeatures(object = object)), 230)
hvf_info <- HVFInfo(object = object[["RNA"]], method = 'mvp')
expect_equal(hvf_info[[grep("mean$", colnames(hvf_info), value = TRUE)]][1:2], c(8.328927, 8.444462), tolerance = 1e-6)
expect_equal(hvf_info[[grep("dispersion$", colnames(hvf_info), value = TRUE)]][1:2], c(10.552507, 10.088223), tolerance = 1e-6)
expect_equal(as.numeric(hvf_info[[grep("dispersion.scaled$", colnames(hvf_info), value = TRUE)]][1:2]), c(0.1113214, -0.1332181523), tolerance = 1e-6)
expect_true(!is.unsorted(rev(hvf_info[VariableFeatures(object = object), "dispersion"])))
})
object <- FindVariableFeatures(object, selection.method = "vst", verbose = FALSE)
test_that("vst selection option returns expected values", {
expect_equal(VariableFeatures(object = object)[1:4], c("PPBP", "IGLL5", "VDAC3", "CD1C"))
expect_equal(length(x = VariableFeatures(object = object)), 230)
hvf_info <- HVFInfo(object = object[["RNA"]], method = 'vst')
expect_equal(hvf_info[[grep("variance$", colnames(hvf_info), value = TRUE)]][1:2], c(1.0251582, 1.2810127), tolerance = 1e-6)
expect_equal(hvf_info[[grep("variance.standardized$", colnames(hvf_info), value = TRUE)]][1:2], c(0.8983463, 0.4731134), tolerance = 1e-6)
expect_true(!is.unsorted(rev(hvf_info[VariableFeatures(object = object), grep("variance.standardized$", colnames(hvf_info))])))
})
#object <- FindVariableFeatures(object, assay = "RNAbp")
#this breaks currently
# Tests for internal functions
# ------------------------------------------------------------------------------
norm.fxn <- function(x) {x / mean(x)}
test_that("CustomNormalize works as expected", {
expect_equal(
CustomNormalize(data = pbmc.test, custom_function = norm.fxn, margin = 2),
apply(X = pbmc.test, MARGIN = 2, FUN = norm.fxn)
)
expect_equal(
CustomNormalize(data = as.matrix(pbmc.test), custom_function = norm.fxn, margin = 2),
apply(X = pbmc.test, MARGIN = 2, FUN = norm.fxn)
)
expect_equal(
CustomNormalize(data = as.data.frame(as.matrix(pbmc.test)), custom_function = norm.fxn, margin = 2),
apply(X = pbmc.test, MARGIN = 2, FUN = norm.fxn)
)
expect_equal(
CustomNormalize(data = pbmc.test, custom_function = norm.fxn, margin = 1),
t(apply(X = pbmc.test, MARGIN = 1, FUN = norm.fxn))
)
expect_error(CustomNormalize(data = pbmc.test, custom_function = norm.fxn, margin = 10))
})
# Tests for SCTransform
# --------------------------------------------------------------------------------
context("SCTransform")
object <- suppressWarnings(SCTransform(object = object, verbose = FALSE, vst.flavor = "v1", seed.use = 1448145))
test_that("SCTransform v1 works as expected", {
expect_true("SCT" %in% names(object))
expect_equal(as.numeric(colSums(GetAssayData(object = object[["SCT"]], layer = "scale.data"))[1]), 11.40288448)
expect_equal(as.numeric(rowSums(GetAssayData(object = object[["SCT"]], layer = "scale.data"))[5]), 0)
expect_equal(as.numeric(colSums(GetAssayData(object = object[["SCT"]], layer = "data"))[1]), 57.7295742, tolerance = 1e-6)
expect_equal(as.numeric(rowSums(GetAssayData(object = object[["SCT"]], layer = "data"))[5]), 11.74403719, tolerance = 1e-6)
expect_equal(as.numeric(colSums(GetAssayData(object = object[["SCT"]], layer = "counts"))[1]), 129)
expect_equal(as.numeric(rowSums(GetAssayData(object = object[["SCT"]], layer = "counts"))[5]), 28)
expect_equal(length(VariableFeatures(object[["SCT"]])), 220)
fa <- SCTResults(object = object, assay = "SCT", slot = "feature.attributes")
expect_equal(fa["MS4A1", "detection_rate"], 0.15)
expect_equal(fa["MS4A1", "gmean"], 0.2027364, tolerance = 1e-6)
expect_equal(fa["MS4A1", "variance"], 1.025158, tolerance = 1e-6)
expect_equal(fa["MS4A1", "residual_mean"], 0.2362887, tolerance = 1e-6)
expect_equal(fa["MS4A1", "residual_variance"], 2.875761, tolerance = 1e-6)
})
suppressWarnings(RNGversion(vstr = "3.5.0"))
object <- suppressWarnings(SCTransform(object = object, vst.flavor = "v1", ncells = 80, verbose = FALSE, seed.use = 42))
test_that("SCTransform ncells param works", {
expect_true("SCT" %in% names(object))
expect_equal(as.numeric(colSums(GetAssayData(object = object[["SCT"]], layer = "scale.data"))[1]), 11.40288, tolerance = 1e-6)
expect_equal(as.numeric(rowSums(GetAssayData(object = object[["SCT"]], layer = "scale.data"))[5]), 0)
expect_equal(as.numeric(colSums(GetAssayData(object = object[["SCT"]], layer = "data"))[1]), 57.72957, tolerance = 1e-6)
expect_equal(as.numeric(rowSums(GetAssayData(object = object[["SCT"]], layer = "data"))[5]), 11.74404, tolerance = 1e-6)
expect_equal(as.numeric(colSums(GetAssayData(object = object[["SCT"]], layer = "counts"))[1]), 129)
expect_equal(as.numeric(rowSums(GetAssayData(object = object[["SCT"]], layer = "counts"))[5]), 28)
expect_equal(length(VariableFeatures(object[["SCT"]])), 220)
fa <- SCTResults(object = object, assay = "SCT", slot = "feature.attributes")
expect_equal(fa["MS4A1", "detection_rate"], 0.15)
expect_equal(fa["MS4A1", "gmean"], 0.2027364, tolerance = 1e-6)
expect_equal(fa["MS4A1", "variance"], 1.025158, tolerance = 1e-6)
expect_equal(fa["MS4A1", "residual_mean"], 0.2362887, tolerance = 1e-3)
expect_equal(fa["MS4A1", "residual_variance"], 2.875761, tolerance = 1e-3)
})
suppressWarnings(object[["SCT_SAVE"]] <- object[["SCT"]])
object[["SCT"]] <- suppressWarnings({SetAssayData(object = object[["SCT"]], slot = "scale.data", new.data = GetAssayData(object = object[["SCT"]], layer = "scale.data")[1:100, ])})
object <- GetResidual(object = object, features = rownames(x = object), verbose = FALSE)
test_that("GetResidual works", {
expect_equal(dim(GetAssayData(object = object[["SCT"]], layer = "scale.data")), c(220, 80))
expect_equal(
GetAssayData(object = object[["SCT"]], layer = "scale.data"),
GetAssayData(object = object[["SCT_SAVE"]], layer = "scale.data")
)
expect_warning(GetResidual(object, features = "asd"))
})
test_that("SCTransform v2 works as expected", {
skip_on_cran()
skip_if_not_installed("glmGamPoi")
object <- suppressWarnings(SCTransform(object = object, verbose = FALSE, vst.flavor = "v2", seed.use = 1448145))
expect_true("SCT" %in% names(object))
expect_equal(as.numeric(colSums(GetAssayData(object = object[["SCT"]], layer = "scale.data"))[1]), 24.5813, tolerance = 1e-4)
expect_equal(as.numeric(rowSums(GetAssayData(object = object[["SCT"]], layer = "scale.data"))[5]), 0)
expect_equal(as.numeric(colSums(GetAssayData(object = object[["SCT"]], layer = "data"))[1]), 58.65829, tolerance = 1e-6)
expect_equal(as.numeric(rowSums(GetAssayData(object = object[["SCT"]], layer = "data"))[5]), 13.75449, tolerance = 1e-6)
expect_equal(as.numeric(colSums(GetAssayData(object = object[["SCT"]], layer = "counts"))[1]), 141)
expect_equal(as.numeric(rowSums(GetAssayData(object = object[["SCT"]], layer = "counts"))[5]), 40)
expect_equal(length(VariableFeatures(object[["SCT"]])), 220)
fa <- SCTResults(object = object, assay = "SCT", slot = "feature.attributes")
expect_equal(fa["MS4A1", "detection_rate"], 0.15)
expect_equal(fa["MS4A1", "gmean"], 0.2027364, tolerance = 1e-6)
expect_equal(fa["MS4A1", "variance"], 1.025158, tolerance = 1e-6)
expect_equal(fa["MS4A1", "residual_mean"], 0.2763993, tolerance = 1e-6)
expect_equal(fa["MS4A1", "residual_variance"], 3.023062, tolerance = 1e-6)
expect_equal(fa["FCER2", "theta"], Inf)
})
test_that("SCTransform `clip.range` param works as expected", {
# make a copy of the testing data
test.data <- object
# override defaults for ease of testing
clip.min <- -0.1
clip.max <- 0.1
# for some reason, the clipping seems to be a little fuzzy at the upper end,
# since this is expected behaviour we'll need to accomodate the difference
clip.max.tolerance <- 0.1
test.result <- suppressWarnings(
SCTransform(
test.data,
clip.range = c(clip.min, clip.max),
)
)
scale.data <- LayerData(test.result[["SCT"]], layer = "scale.data")
expect_true(min(scale.data) >= clip.min)
expect_true(max(scale.data) <= (clip.max + clip.max.tolerance))
# when `ncells` is less than the size of the dataset the residuals will get
# re-clipped in batches, make sure this clipping is done correctly as well
test.result <- suppressWarnings(
SCTransform(
test.data,
clip.range = c(clip.min, clip.max),
ncells = 40
)
)
scale.data <- LayerData(test.result[["SCT"]], layer = "scale.data")
expect_true(min(scale.data) >= clip.min)
expect_true(max(scale.data) <= (clip.max + clip.max.tolerance))
})
test_that("SCTransform `vars.to.regress` param works as expected", {
# make a copy of the testing data
test.data <- object
# add a fake mitochondrial gene to the counts matrix
counts <- LayerData(test.data, assay = "RNA", layer = "counts")
counts <- rbind(counts, 5)
rownames(counts)[nrow(counts)] <- "MT-TEST"
# use the fake feature to populate a new meta.data column
test.data[[ "percent.mt" ]] <- PercentageFeatureSet(
test.data,
pattern="^MT-"
)
# make sure that `ncells` is smaller than the datset being transformed
# so tha the regression model is trained on a subset of the data - make sure
# the regression is applied to the entire dataset
left <- suppressWarnings(
SCTransform(
test.data,
vars.to.regress = NULL,
ncells = ncol(test.data) / 2,
verbose = FALSE
)
)
right <- suppressWarnings(
SCTransform(
test.data,
vars.to.regress = "percent.mt",
ncells = ncol(test.data) / 2,
verbose = FALSE
)
)
expect_false(identical(left[["SCT"]]$scale.data, right[["SCT"]]$scale.data))
# if the `assay` points to an `Assay5` instance the regression is handled
# using separate logic
test.data[["RNAv5"]] <- CreateAssay5Object(
counts = LayerData(
test.data,
assay = "RNA",
layer = "counts"
)
)
left <- suppressWarnings(
SCTransform(
test.data,
assay = "RNAv5",
vars.to.regress = NULL,
ncells = ncol(test.data) / 2,
verbose = FALSE
)
)
right <- suppressWarnings(
SCTransform(
test.data,
assay = "RNAv5",
vars.to.regress = "percent.mt",
ncells = ncol(test.data) / 2,
verbose = FALSE
)
)
expect_false(identical(left[["SCT"]]$scale.data, right[["SCT"]]$scale.data))
})
test_that("SCTransform is equivalent for BPcells ", {
skip_on_cran()
skip_on_cran()
skip_if_not_installed("glmGamPoi")
library(Matrix)
skip_if_not_installed("BPCells")
library(BPCells)
mat_bpcells <- t(as(t(object[['RNA']]$counts ), "IterableMatrix"))
object[['RNAbp']] <- CreateAssay5Object(counts = mat_bpcells)
object <- suppressWarnings(SCTransform(object = object, assay = "RNA", new.assay.name = "SCT",
verbose = FALSE, vst.flavor = "v2", seed.use = 1448145))
object <- suppressWarnings(SCTransform(object = object, assay = "RNAbp", new.assay.name = "SCTbp",
verbose = FALSE, vst.flavor = "v2", seed.use = 1448145))
expect_equal(as.matrix(LayerData(object = object[["SCT"]], layer = "data")),
as.matrix(LayerData(object = object[["SCTbp"]], layer = "data")),
tolerance = 1e-6)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.