context("Printer works")
test_that("data printer works", {
X = as.matrix(1:10)
expect_silent({ data_source = InMemoryData$new(X, "x") })
expect_silent({ data_target = InMemoryData$new() })
expect_output({ test_source = show(data_source) })
expect_output({ test_target = show(data_target) })
expect_equal(test_source, "InMemoryDataPrinter")
expect_equal(test_target, "InMemoryDataPrinter")
})
test_that("factory list printer works", {
expect_silent({ factory_list = BlearnerFactoryList$new() })
expect_output({ test_factory_list_printer = show(factory_list) })
expect_equal(test_factory_list_printer, "BlearnerFactoryListPrinter")
})
test_that("response printer works", {
expect_silent({ regr_response = ResponseRegr$new("target", cbind(rnorm(10))) })
expect_silent({ binary_classif_response = ResponseBinaryClassif$new("target", "A", sample(c("A", "B"), 10, TRUE)) })
expect_output({ test_regr_response = show(regr_response) })
expect_output({ test_binary_classif_response = show(binary_classif_response) })
expect_equal(test_regr_response, "ResponseRegrPrinter")
expect_equal(test_binary_classif_response, "ResponseBinaryClassifPrinter")
})
test_that("Loss printer works", {
expect_silent({ quadratic_loss = LossQuadratic$new() })
expect_silent({ absolute_loss = LossAbsolute$new() })
expect_silent({ quantile_loss = LossQuantile$new() })
expect_silent({ huber_loss = LossHuber$new() })
expect_silent({ binomial_loss = LossBinomial$new() })
#expect_silent({ Rcpp::sourceCpp(code = getCustomCppExample(example = "loss", silent = TRUE)) })
myLossFun = function(true_value, prediction) NULL
myGradientFun = function(true_value, prediction) NULL
myConstantInitializerFun = function(true_value) NULL
#expect_silent({ custom_cpp_loss = LossCustomCpp$new(lossFunSetter(), gradFunSetter(), constInitFunSetter()) })
expect_silent({ custom_loss = LossCustom$new(myLossFun, myGradientFun, myConstantInitializerFun) })
expect_output({ test_quadratic_printer = show(quadratic_loss) })
expect_output({ test_absolute_printer = show(absolute_loss) })
expect_output({ test_quantile_printer = show(quantile_loss) })
expect_output({ test_huber_printer = show(huber_loss) })
expect_output({ test_custom_printer = show(custom_loss) })
#expect_output({ test_custom_cpp_printer = show(custom_cpp_loss) })
expect_output({ test_binomialprinter = show(binomial_loss) })
expect_equal(test_quadratic_printer, "LossQuadraticPrinter")
expect_equal(test_absolute_printer, "LossAbsolutePrinter")
expect_equal(test_quantile_printer, "LossQuantilePrinter")
expect_equal(test_huber_printer, "LossHuberPrinter")
expect_equal(test_binomialprinter, "LossBinomialPrinter")
#expect_equal(test_custom_cpp_printer, "LossCustomCppPrinter")
expect_equal(test_custom_printer, "LossCustomPrinter")
})
test_that("Baselearner factory printer works", {
df = mtcars
X_hp = cbind(df[["hp"]])
X_hp_sp = as.matrix(df[["hp"]])
expect_silent({ data_source = InMemoryData$new(X_hp, "hp") })
expect_silent({ data_source_sp = InMemoryData$new(X_hp_sp, "hp") })
expect_silent({ linear_factory_hp = BaselearnerPolynomial$new(data_source,
list(degree = 1, intercept = FALSE)) })
expect_output({ linear_factory_hp_printer = show(linear_factory_hp) })
expect_equal(linear_factory_hp_printer, "BaselearnerPolynomialPrinter")
expect_silent({ quad_factory_hp = BaselearnerPolynomial$new(data_source,
list(degree = 2, intercept = FALSE)) })
expect_output({ quad_factory_hp_printer = show(quad_factory_hp) })
expect_equal(quad_factory_hp_printer, "BaselearnerPolynomialPrinter")
expect_silent({ cubic_factory_hp = BaselearnerPolynomial$new(data_source,
list(degree = 3, intercept = FALSE)) })
expect_output({ cubic_factory_hp_printer = show(cubic_factory_hp) })
expect_equal(cubic_factory_hp_printer, "BaselearnerPolynomialPrinter")
expect_silent({ poly_factory_hp = BaselearnerPolynomial$new(data_source,
list(degree = 4, intercept = FALSE)) })
expect_output({ poly_factory_hp_printer = show(poly_factory_hp) })
expect_equal(poly_factory_hp_printer, "BaselearnerPolynomialPrinter")
expect_silent({ spline_factory = BaselearnerPSpline$new(data_source_sp,
list(degree = 3, n_knots = 5, penalty = 2.5, differences = 2)) })
expect_output({ spline_printer = show(spline_factory) })
expect_equal(spline_printer, "BaselearnerPSplinePrinter")
instantiateData = function (X)
{
return(X);
}
trainFun = function (y, X) {
return(solve(t(X) %*% X) %*% t(X) %*% y)
}
predictFun = function (model, newdata) {
return(newdata %*% model)
}
extractParameter = function (model) {
return(model)
}
expect_silent({
custom_factory = BaselearnerCustom$new(data_source,
list(instantiate_fun = instantiateData, train_fun = trainFun,
predict_fun = predictFun, param_fun = extractParameter))
})
expect_output({ custom_factory_printer = show(custom_factory) })
expect_equal(custom_factory_printer, "BaselearnerCustomPrinter")
#expect_output(Rcpp::sourceCpp(code = getCustomCppExample()))
#expect_silent({
#custom_cpp_factory = BaselearnerCustomCpp$new(data_source,
#list(instantiate_ptr = dataFunSetter(), train_ptr = trainFunSetter(),
#predict_ptr = predictFunSetter()))
#})
#expect_output({ custom_cpp_factory_printer = show(custom_cpp_factory) })
#expect_equal(custom_cpp_factory_printer, "BaselearnerCustomCppPrinter")
})
test_that("Optimizer printer works", {
expect_silent({ greedy_optimizer = OptimizerCoordinateDescent$new() })
expect_output({ greedy_optimizer_printer = show(greedy_optimizer) })
expect_equal(greedy_optimizer_printer, "OptimizerCoordinateDescentPrinter")
expect_silent({ greedy_optimizer_ls = OptimizerCoordinateDescentLineSearch$new() })
expect_output({ greedy_optimizer_printer_ls = show(greedy_optimizer_ls) })
expect_equal(greedy_optimizer_printer_ls, "OptimizerCoordinateDescentLineSearchPrinter")
})
test_that("Logger(List) printer works", {
expect_silent({ loss_quadratic = LossQuadratic$new() })
expect_silent({
eval_oob_test = list(
InMemoryData$new(as.matrix(NA_real_), "hp"),
InMemoryData$new(as.matrix(NA_real_), "wt")
)
})
y = NA_real_
response_oob = ResponseRegr$new("mpg_oog", as.matrix(y))
expect_silent({ log_iterations = LoggerIteration$new("iterations", TRUE, 500) })
expect_silent({ log_time = LoggerTime$new("time", FALSE, 500, "microseconds") })
expect_silent({ log_inbag = LoggerInbagRisk$new("inbag_risk", FALSE, loss_quadratic, 0.05, 5) })
expect_silent({ log_oob = LoggerOobRisk$new("oob_risk", FALSE, loss_quadratic, 0.05, 5, eval_oob_test, response_oob) })
expect_silent({ logger_list = LoggerList$new() })
expect_output({ logger_list_printer = show(logger_list) })
expect_equal(logger_list_printer, "LoggerListPrinter")
expect_silent(logger_list$registerLogger(log_iterations))
expect_silent(logger_list$registerLogger(log_time))
expect_silent(logger_list$registerLogger(log_inbag))
expect_silent(logger_list$registerLogger(log_oob))
expect_output({ log_iterations_printer = show(log_iterations) })
expect_output({ log_time_printer = show(log_time) })
expect_output({ log_inbag = show(log_inbag) })
expect_output({ log_oob = show(log_oob) })
expect_output({ logger_list_printer = show(logger_list) })
expect_equal(log_iterations_printer, "LoggerIterationPrinter")
expect_equal(log_time_printer, "LoggerTimePrinter")
expect_equal(log_inbag, "LoggerInbagRiskPrinter")
expect_equal(log_oob, "LoggerOobRiskPrinter")
expect_equal(logger_list_printer, "LoggerListPrinter")
})
test_that("Compboost printer works", {
df = mtcars
df$hp2 = df[["hp"]]^2
X_hp = as.matrix(df[["hp"]], ncol = 1)
X_wt = as.matrix(df[["wt"]], ncol = 1)
y = df[["mpg"]]
response = ResponseRegr$new("mpg", as.matrix(y))
response_oob = ResponseRegr$new("mpg_oog", as.matrix(y))
expect_silent({ data_source_hp = InMemoryData$new(X_hp, "hp") })
expect_silent({ data_source_wt = InMemoryData$new(X_wt, "wt") })
eval_oob_test = list(data_source_hp, data_source_wt)
learning_rate = 0.05
iter_max = 500
expect_silent({ linear_factory_hp = BaselearnerPolynomial$new(data_source_hp,
list(degree = 1, intercept = FALSE)) })
expect_silent({ linear_factory_wt = BaselearnerPolynomial$new(data_source_wt,
list(degree = 1, intercept = FALSE)) })
expect_silent({ quadratic_factory_hp = BaselearnerPolynomial$new(data_source_hp,
list(degree = 2, intercept = FALSE)) })
expect_silent({ factory_list = BlearnerFactoryList$new() })
expect_silent(factory_list$registerFactory(linear_factory_hp))
expect_silent(factory_list$registerFactory(linear_factory_wt))
expect_silent(factory_list$registerFactory(quadratic_factory_hp))
expect_silent({ loss_quadratic = LossQuadratic$new() })
expect_silent({ optimizer = OptimizerCoordinateDescent$new() })
expect_silent({ log_iterations = LoggerIteration$new("iterations", TRUE, iter_max) })
expect_silent({ log_time_ms = LoggerTime$new("time_ms", TRUE, 50000, "microseconds") })
expect_silent({ log_time_sec = LoggerTime$new("time_sec", TRUE, 2, "seconds") })
expect_silent({ log_time_min = LoggerTime$new("time_min", TRUE, 1, "minutes") })
expect_silent({ log_inbag = LoggerInbagRisk$new("inbag_risk", FALSE, loss_quadratic, 0.01, 5) })
expect_silent({ log_oob = LoggerOobRisk$new("oob_risk", FALSE, loss_quadratic, 0.01, 5, eval_oob_test, response_oob) })
expect_silent({ logger_list = LoggerList$new() })
expect_silent({ logger_list$registerLogger(log_iterations) })
expect_silent({ logger_list$registerLogger(log_time_ms) })
expect_silent({ logger_list$registerLogger(log_time_sec) })
expect_silent({ logger_list$registerLogger(log_time_min) })
expect_silent({ logger_list$registerLogger(log_inbag) })
expect_silent({ logger_list$registerLogger(log_oob) })
expect_silent({
cboost = Compboost_internal$new(
response = response,
learning_rate = learning_rate,
stop_if_all_stopper_fulfilled = FALSE,
factory_list = factory_list,
loss = loss_quadratic,
logger_list = logger_list,
optimizer = optimizer
)
})
expect_output(cboost$train(trace = 0))
expect_output({ cboost_printer = show(cboost) })
expect_equal(cboost_printer, "CompboostInternalPrinter")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.