#' Conduct sparse mediation with group LASSO for smaller p (< min(n,200))
#'
#' Fit a mediation model via penalized maximum likelihood and structural equation model.
#' The regularization path is computed for the lasso or elasticnet penalty at a grid of
#' values for the regularization parameter lambda. Currently, mediation analysis is developed based on gaussian assumption.
#'
#' Multiple Mediaton Model:
#' (1) M = Xa + e1
#' (2) Y = Xc' + Mb + e2
#' And in the optimization, we do not regularize c', due to the assumption of partial mediation.
#' @param X One-dimensional predictor
#' @param M Multivariate mediator
#' @param Y Outcome
#' @param tol (default -10^(-10)) convergence criterion
#' @param max.iter (default=100) maximum iteration
#' @param lambda (default=exp(-5:0)) tuning parameter for L1 penalization
#' @param grpgroup (default=c(1,rep( 1:V +1,2)))
#' @param penalty.factor (default=c(0,rep(sqrt(2),V))) give different weight of penalization for the 2V mediation paths.
#' @return c directeffect
#' @return hatb Path b (M->Y given X) estimates
#' @return hata Path a (X->M) estimates
#' @return medest Mediation estimates (a*b)
#' @return alpha
#' @return lambda
#' @return nump Number of selected mediation paths
#' @examples
#' N=100
#' V=50
#' set.seed(1234)
#' a = c(rep(1,3),rep(0,V-3))*5;b<-a
#' X = rnorm(N)
#' M = X %*% t(a)+ matrix(rnorm(N*V),N,V)
#' Y = X + M %*% b + rnorm(N)
#' fit=sparse.mediation.grplasso.smallp(X,M,Y,verbose=FALSE, lambda = exp(-5:0))
#' @author Seonjoo Lee, \email{sl3670@cumc.columbia.edu}
#' @references TBA
#' @keywords highdimensional mediation glmnet
#' @import parallel
#' @import MASS
#' @import gglasso
#' @importFrom stats var predict
#' @export
sparse.mediation.grplasso.smallp = function(X,M,Y,
tol=10^(-10),
max.iter=100,
lambda = exp(-5:0),
grpgroup=c(1, rep(1:(ncol(M))+1,2)),
penalty.factor=c(0,rep(1,ncol(M))),
verbose=FALSE){
## Center all values, and also make their scales to be 1. In this context, all coefficients will be dexribed in terms of correlation or partial correlations.
N = nrow(M)
V = ncol(M)
Y.mean=mean(Y)
X.mean=mean(X)
M.mean=apply(M,2,mean)
Y.sd=as.vector(sqrt(var(Y)))
X.sd=as.vector(sqrt(var(X)))
M.sd=sqrt(apply(M,2,var))
Y = scale(Y,center=TRUE,scale=TRUE)
X = matrix(scale(X,center=TRUE,scale=TRUE),N,1)
M = scale(M, center=TRUE,scale=TRUE)
## Penalty Factor
if (ncol(X)>1){stop("X has more than 1 colum. Stop.")}
## Initialization###
## OLS Estimation ###
U = cbind(X,M)
tUU = t(U)%*%U
tUU.sqmat=sqrtmat.comp(tUU)
invtUU = ginv(tUU)
#invtMM = ginv(t(M)%*%M)
tXX = t(X)%*%X
tUY = t(U)%*%Y
tMX = t(M)%*%X
## Interative Update
lam=lambda
betaest = matrix(0,1+2*V,length(lam))
for (j in 1:length(lam)){
if (verbose==TRUE){print(paste("Lambda",lam[j]))}
gamma_new = invtUU %*% tUY
alpha_new = t(ginv(t(X)%*%X)%*%t(X)%*%M)
iter=0
err=1000
while( err>tol & iter<max.iter){
alpha_old=alpha_new
gamma_old = gamma_new
beta_old = c(gamma_old,alpha_old)
sigma1 = mean((Y - U %*% gamma_old)^2)
tmp = M - matrix(X,N,1) %*% matrix(alpha_old,1,V)
Sigma2 = t(tmp)%*%tmp/N
Sigma2.sqmat=sqrtmat.comp(Sigma2)
Sigma2.sqrt.inv=ginv(Sigma2.sqmat)
Sigma2.inv=ginv(Sigma2)
A = matrix(0,1+2*V,1+2*V)
A[1:(1+V),1:(1+V)]=1/sigma1 * tUU
A[(1+V)+ 1:V,(1+V)+ 1:V]= as.numeric(tXX) * Sigma2.inv
sqmatA = A;sqmatA[1:(1+V),1:(1+V)]=1/sqrt(sigma1) * tUU.sqmat
sqmatA[(1+V)+ 1:V,(1+V)+ 1:V]= sqrt(as.numeric(tXX)) * Sigma2.sqrt.inv
C = ginv(sqmatA) %*% rbind(tUY/sigma1, Sigma2.inv%*%tMX)
if(is.null(penalty.factor)==TRUE){
#fit = glmnet(sqmatA, C,lambda=lambda[j],alpha=alpha)
fit=gglasso(x=scale(sqmatA)[,order(grpgroup)],
y=scale(C),
lambda=lambda[j],
group=grpgroup[order(grpgroup)])
}else{
#fit = glmnet(sqmatA, C,lambda=lambda[j],penalty.factor=penalty.factor,alpha=alpha)
fit=gglasso(x=scale(sqmatA)[,order(grpgroup)],
y=scale(C),
lambda=lambda[j],
group=grpgroup[order(grpgroup)],
pf = penalty.factor)
}
beta_new = as.vector(coef(fit))[-1]
## use thresholds as well: since all variables are standardized, coefficients less than 0.001 does not have any meaning.
#if (threshold>0){
# beta_new[abs(beta_new)<threshold]<-0
#}
#beta_new[(1:V) +1]*beta_new[(1:V) +V+1]
gamma_new = beta_new[c(1, (1:V)*2)]#beta_new[1:(V+1)]
alpha_new = beta_new[c(1:V)*2+1]#beta_new[(1:V)+ V+1]
err = sum((beta_old[-1]-c(gamma_new[-1],alpha_new))^2)
iter=iter+1
if (verbose==TRUE){print(c(iter, err,sigma1))}
}
betaest[,j]=beta_new[c(1, (1:V)*2, (1:V)*2+1)]
}
cest =betaest[1,]
medest = betaest[(1:V)+1,]*betaest[(1:V)+V+1,]
nump=apply(betaest,2,function(x){sum(abs(x)>0)})
return(list(
c = cest,
hatb=betaest[(1:V)+1,]*Y.sd/M.sd,
hata=betaest[(1:V)+V+1,]*M.sd/X.sd,
medest = betaest[(1:V)+1,]*betaest[(1:V)+V+1,]*Y.sd/X.sd,
lambda = lambda,
nump=nump,
nmed=apply(medest,2,function(x)sum(x!=0))
))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.