#' Conduct sparse mediation for large p ( p > n)
#'
#' Sparse mediation with sparse group lasso (for mediation paths)
#' and sparse precision matrix estimation using fast computation of inverse matrix
#'
#' Fit a mediation model via penalized maximum likelihood and structural equation model.
#' The regularization path is computed for the lasso or elasticnet penalty at a grid of
#' values for the regularization parameter lambda. Currently, mediation analysis is developed based on gaussian assumption.
#'
#' Multiple Mediaton Model:
#' (1) M = Xa + e1
#' (2) Y = Xc' + Mb + e2
#' And in the optimization, we do not regularize c', due to the assumption of partial mediation.
#' @param X One-dimensional predictor
#' @param M Multivariate mediator
#' @param Y Outcome
#' @param tol (default -10^(-10)) convergence criterion
#' @param max.iter (default=100) maximum iteration
#' @param lambda2 Tuning parameter for Covariance matrix L1 penalization
#' @param lambda1 (default=seq(0.02,0.4,length=5)) tuning parameter for regression coefficient L1 penalization
#' @param alpha (defult=1) tuning parameter for L2 penalization
#' @param verbose (default=FALSE) print progress
#' @param Omega.out (defult=FALSE) output Omega estimates (beta version WIP.)
#' @param threshold (default=10^(-5))
#' @param non.zeros.stop (default=ncol(M)) When to stop the regularization path.
#' @param group.penalty.factor (V+1)-dimensional group penalty factor vector. If a user does not want to penalize mediator, specify 0 otherwise 1. The first element is the direct effect followed by V-mediators. The default value is c(0,rep(1,V)).
#' @param penalty.factor (1+2*V)-dimensional sparsity penalty factor vector.
#' @return c directeffect
#' @return hatb Path b (M->Y given X) estimates
#' @return hata Path a (X->M) estimates
#' @return medest Mediation estimates (a*b)
#' @return alpha
#' @return lambda1 Tuning parameters for regression coefficients
#' @return lambda2 Tuning parameters for inversed covariance matrix (Omega)
#' @return nump Number of selected mediation paths
#' @return Omega Estimated covariance matrix of the mediator
#' @examples
#' library(sparsemediation)
#' N=100
#' V=50
#' set.seed(1234)
#' covmat=matrix(0,V+2,V+2);
#' covmat[1,2]=0.5;covmat[1, (1:3)+2]=rep(0.5,3);covmat[2, (1:3)+2]=rep(0.5,3);
#' covmat=covmat+t(covmat);diag(covmat)<-1
#' sqrtmat = sqrtmat.comp(covmat)
#' tmpmat = matrix(rnorm(N*(V+2)),N,V+2) %*% sqrtmat
#'
#' X=tmpmat[,1]
#' Y=tmpmat[,2]
#' M=tmpmat[,-c(1:2)]
#' #fit=sparse.mediation.sgrlasso.largep_omega(X,M,Y)
#'
#' @author Seonjoo Lee, \email{sl3670@cumc.columbia.edu}
#' @references TBA
#' @keywords highdimensional mediation L1penalization
#' @import parallel
#' @import MASS
#' @import glmnet
#' @import QUIC
#' @import Matrix
#' @importFrom stats var predict
#' @useDynLib smm
#' @importFrom Rcpp sourceCpp
#' @export
sparse.mediation.sgrplasso.largep_omega = function(X,M,Y,#Cov=NULL,
tol=10^(-10),
max.iter=10,
lambda1 =exp(-5:1),
lambda2 = exp(seq(0,0.8*log(ncol(M)),length=4)),
alpha=0.8,
group.penalty.factor=c(1,rep(1, ncol(M))),
penalty.factor=c(1,rep(1,ncol(M)*2)),
verbose=FALSE,
Omega.out=FALSE,
threshold=10^(-5),
non.zeros.stop=ncol(M)/2){
## Center all values, and also make their scales to be 1. In this context, all coefficients will be dexribed in terms of correlation or partial correlations.
N = nrow(M)
V = ncol(M)
#Y.mean=mean(Y)
#X.mean=mean(X)
#M.mean=apply(M,2,mean)
Y.sd=as.vector(sqrt(var(Y)))
X.sd=as.vector(sqrt(var(X)))
M.sd=sqrt(apply(M,2,var))
Y = scale(Y,center=FALSE,scale=TRUE)
X = matrix(scale(X,center=TRUE,scale=TRUE),N,1)
M = scale(M, center=FALSE,scale=TRUE)
# if(is.null(Cov)==FALSE){Cov = scale(Cov, center=FALSE,scale=TRUE)}
## Penalty Factor
if (ncol(X)>1){stop("X has more than 1 colum. Stop.")}
## Initialization###
## OLS Estimation ###
U = cbind(X,M)
#invtMM = ginv(t(M)%*%M)
tXX = t(X)%*%X
tUY = t(U)%*%Y
tMX = t(M)%*%X
#tUU = #rbind(cbind(tXX, t(tMX)),cbind(tMX, t(M)%*%M))
#tUU.sqmat=sqrtmat.comp(tUU)
tUU = ginv.largep(U,sqrtmat=TRUE,sqrtinvmat=TRUE)
## Interative Update
#betaest = matrix(0,1+2*V,length(lambda1)*length(lambda2)*length(tau)*length(alpha))
lam1=rep(sort(lambda1,decreasing=TRUE), each=length(lambda2))
lam2=rep(lambda2, length(lambda1))
alpha = sort(alpha,decreasing=TRUE)
myfunc<-function(j, k,gamma_new = rep(0,V+1),alpha_new = rep(0,V)){
if(verbose==TRUE){print(paste("Lambda1=",lam1[j], "Lambda2=",lam2[j], "alpha=",alpha[k]))}
iter=0
err=1000
allzero.count=0
sigma2penalty=matrix(1,V,V);diag(sigma2penalty)<-0
while( err>tol & iter<max.iter & allzero.count<4){
alpha_old=alpha_new
gamma_old = gamma_new
beta_old = c(gamma_old,alpha_old)
sigma1 = mean( (Y - U %*% gamma_old)^2)
tmp = M - matrix(X,N,1) %*% matrix(alpha_old,1,V)
Sigma2 = t(tmp)%*%tmp/N
Omega=QUIC( Sigma2,rho=sigma2penalty*lam2[j],msg=0)#Inverse matrix of the covariance matrix of M
Omega.sqrtmat=try(t(base::chol(Omega$X)),TRUE)
if (is.matrix(Omega.sqrtmat)==FALSE){
tmp.omega.1=base::chol(Omega$X,pivot=TRUE)
Omega.sqrtmat=t(tmp.omega.1[,order(attr(tmp.omega.1, 'pivot'))])
}
#sqrtmat.comp(Omega$X)
Omega.sqrtmat.inv=try(t(base::chol(Omega$W)),TRUE)#sqrtmat.comp(Omega$W)
if (is.matrix(Omega.sqrtmat.inv)==FALSE){
tmp.omega.2=base::chol(Omega$W,pivot=TRUE)
Omega.sqrtmat.inv=t(tmp.omega.2[,order(attr(tmp.omega.2, 'pivot'))])
}
Asqmat = bdiag(1/sqrt(sigma1) * tUU$sqrtmat, sqrt(as.numeric(tXX)) * Omega.sqrtmat)
Asqmat.inv=bdiag(sqrt(sigma1) * tUU$sqrtinv, 1/sqrt(as.numeric(tXX)) * Omega.sqrtmat.inv)
C = Asqmat.inv %*% rbind(tUY/sigma1, Omega$X%*%tMX)
# fit = SGL(list(x=as.matrix(Asqmat), y=as.matrix(C)),
# index=grpgroup,
# lambdas=lam1[j],
# alpha=alphalist[j],standardize=FALSE)
fit = oneDim_allowcov(list(x=as.matrix(Asqmat), y=as.matrix(C)),
index=c(1, rep(1:V +1,2)),
lambdas=lam1[j],
alpha=alpha[k],
group.penalty.factor = group.penalty.factor,
penalty.factor=penalty.factor)#,standardize=FALSE)
fit$beta[abs(fit$beta)<threshold]<-0
beta_new=fit$beta
if (all(beta_new[-1]==0)){allzero.count=allzero.count+1}
gamma_new = beta_new[1:(V+1)]#beta_new[c(1, (1:V)*2)]#
alpha_new = beta_new[(1:V)+ V+1]#beta_new[c(1:V)*2+1]#beta_new[(1:V)+ V+1]#
# print(cbind(alpha_new,gamma_new[-1])[1:7,])
err = sqrt(sum((beta_old[-1]-c(gamma_new[-1],alpha_new))^2))
iter=iter+1
if (verbose==TRUE){print(c(iter, err))}
}
### compute BIC
# zerolist=(c(gamma_new[1],alpha_new) ==0)
# tmp = M - matrix(X,N,1) %*% matrix(alpha_new,1,V)
# Sigma2 = t(tmp)%*%tmp/N
# Omega=QUIC( Sigma2,rho=sigma2penalty*lam2[j],msg=0)
# bic=N*log(sum(Y - cbind(X,M) %*% gamma_new)^2/N) + N*log(det(Omega$W)) +
# log(N)*(sum(1-zerolist))
return(list(betahat=beta_new,Omegahat=Omega,sigma_y_sq=sigma1,#bic=bic,
alpha=alpha[k], lambda1=lam1[j],lambda2=lam2[j]))
}
zzz<-list()
## when the algorithm selects too many parameters, we stop there.
for (k in 1:length(alpha)){
zzz[[k]]<-list()
j=0
nonzeros=0
while( j<length(lam1) & nonzeros< non.zeros.stop){
j=j+1
re<-c();
gamma_init = rep(0,V+1)
alpha_init = rep(0,V)
zzz[[k]][[j]]<-NULL
if (j>1){if(is.null(zzz[[k]][[j-1]])==FALSE){
gamma_init = zzz[[k]][[j-1]]$betahat[1:(V+1)]
alpha_init = zzz[[k]][[j-1]]$betahat[1:(V) + (V+1)]
}}
try(re<-myfunc(j=j,k=k,gamma_new=gamma_init,alpha_new=alpha_init))
zzz[[k]][[j]]<-re
nonzeros=sum(re$betahat!=0)
}
}
betaest=do.call(cbind,lapply(zzz, function(x0){do.call(cbind,lapply(x0,function(xx){xx$betahat}))}))
alphas=unlist(lapply(zzz, function(x0){unlist(lapply(x0,function(xx){xx$alpha}))}))
sigma_y_sq=unlist(lapply(zzz, function(x0){unlist(lapply(x0,function(xx){xx$sigma_y_sq}))}))
lam1s=unlist(lapply(zzz, function(x0){unlist(lapply(x0,function(xx){xx$lambda1}))}))
lam2s=unlist(lapply(zzz, function(x0){unlist(lapply(x0,function(xx){xx$lambda2}))}))
cest =betaest[1,]
medest = betaest[(1:V)+1,]*betaest[(1:V)+V+1,]
nump=apply(betaest,2,function(x){sum(abs(x)>0)})
if (Omega.out==FALSE){Omega=NULL;
}else{Omegas=lapply(zzz, function(x0)lapply(x0,function(xx)xx$Omegahat$X));Omega=do.call(c, Omegas)}
return(list(
c = cest,
hatb=betaest[(1:V)+1,]*Y.sd/M.sd,
hata=betaest[(1:V)+V+1,]*M.sd/X.sd,
medest = betaest[(1:V)+1,]*betaest[(1:V)+V+1,]*Y.sd/X.sd,
alpha=alphas,
lambda1 = lam1s,
lambda2= lam2s,
nump=nump,
Omega=Omega,
sigma_y_sq=sigma_y_sq,
# bic=bics,
nmed=apply(as.matrix(medest), 2,function(x)sum(abs(x)>0))
))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.