R/heatmapTable.R

Defines functions heatmapTable .heatmapTableMultiStudies

Documented in heatmapTable

.heatmapTableMultiStudies <- function(val_all, RAVmodel,
                                      scoreCutoff = scoreCutoff,
                                      breaks = breaks, colors = colors,
                                      column_title = column_title,
                                      row_title = row_title,
                                      filterMessage = filterMessage, ...) {

  dat <- validatedSignatures(val_all, scoreCutoff = scoreCutoff,
                             filterMessage = FALSE)

  ## Define Heatmap Table Size
  if (is.null(column_title)) {
    column_title <- character(0)
    hmHeight <- nrow(dat) + 1
  } else {
    column_title <- column_title
    hmHeight <- nrow(dat) + 2
  }

  if (is.null(row_title)) {
    row_title <- character(0)
    hmWidth <- ncol(dat) + 1
  } else {
    row_title <- row_title
    hmWidth <- ncol(dat) + 2
  }

  ## Check the RAV quality
  dat_ind <- gsub("RAV", "", colnames(dat)) %>% as.numeric()
  .lowQualityRAVs(RAVmodel, dat_ind, filterMessage)

  ## Draw Heatmap
  ComplexHeatmap::Heatmap(dat, col = circlize::colorRamp2(breaks, colors),
                          name = "Corr",
                          cluster_rows = FALSE,
                          cluster_columns = FALSE,
                          cell_fun = function(j, i, x, y, width, height, fill) {
                            grid::grid.text(sprintf("%.2f", dat[i, j]), x, y,
                                            gp = grid::gpar(fontsize = 8))
                          },
                          show_heatmap_legend = FALSE,
                          row_title = row_title,
                          row_title_gp = grid::gpar(fontsize = 11,
                                                    fontface = "bold"),
                          row_names_gp = grid::gpar(fontsize = 10),
                          row_names_side = "right",
                          row_names_max_width = unit(0.5, "cm"),
                          column_title = column_title,
                          column_title_gp = grid::gpar(fontsize = 11,
                                                       fontface = "bold"),
                          column_names_side = "bottom",
                          column_names_gp = grid::gpar(fontsize = 10),
                          column_names_rot = 90,
                          column_names_max_height = unit(1, "cm"),
                          heatmap_width = unit(hmWidth, "cm"),
                          heatmap_height = unit(hmHeight, "cm"), ...
  )
}

#' Validation result in heatmap format
#'
#' This function subsets \code{\link{validate}} outputs with different criteria
#' and visualize it in a heatmap-like table.
#'
#' @param val_all An output matrix from \code{\link{validate}} function with the
#' parameter \code{level = "max"}. Subset of this matrix is plotted as a heatmap
#' using \code{\link[ComplexHeatmap]{Heatmap}}
#' @param RAVmodel PCAGenomicSignatures-class object. RAVmodel used to prepare
#' \code{val_all} input.
#' @param ind An integer vector. If this parameter is provided, the other
#' parameters, \code{num.out, scoreCutoff, swCutoff, clsizeCutoff} will be
#' ignored and the heatmap table containing only the provided index will be
#' printed.
#' @param num.out A number of highly validated RAVs to output. Default is 5.
#' If any of the cutoff parameters are provided, \code{num.out} or the number of
#' filtered RAVs, whichever smaller, will be chosen.
#' @param scoreCutoff A numeric value for the minimum correlation (not include).
#' If \code{val_all} input is from multiple studies, the default is 0.7 and this is
#' the only cutoff criteria considered: \code{swCutoff} and \code{clsizeCutoff}
#' will be ignored.
#' @param swCutoff A numeric value for the minimum average silhouette width.
#' @param clsizeCutoff A integer value for the minimum cluster size.
#' @param breaks A numeric vector of length 3. Number represents the values
#' assigned to three colors. Default is \code{c(0, 0.5, 1)}.
#' @param colors A character vector of length 3. Each represents the color
#' assigned to three breaks. Default is \code{c("white", "white smoke", "red")}.
#' @param column_title A character string. Provide the column title.
#' @param row_title A character string. Provide the row title.
#' @param whichPC An integer value between 1 and 8. PC number of your data to
#' check the validated signatures with. Under the default (\code{NULL}), it
#' outputs top scored signatures with any PC of your data.
#' @param ... any additional argument for \code{\link[ComplexHeatmap]{Heatmap}}
#' @param filterMessage A logical. Under the default \code{TRUE}, any output
#' RAV belong to the filtering list will give a message. Silence this message
#' with \code{filterMessage=FALSE}. You can check the filter list using
#' \code{data("filterList")}.
#'
#' @return A heatmap displaying the subset of the validation result that met the
#' given cutoff criteria. If \code{val_all} input is from a single dataset, the
#' output heatmap will contain both score and average silhouette width for each
#' cluster.
#'
#' If \code{val_all} input is from multiple studies, the output heatmap's rows
#' will represent each study and the columns will be RAVs, which meet
#' \code{scoreCutoff} for any of the input studies.
#'
#' @examples
#' data(miniRAVmodel)
#' library(bcellViper)
#' data(bcellViper)
#'
#' ## Single dataset
#' val_all <- validate(dset, miniRAVmodel)
#' heatmapTable(val_all, miniRAVmodel, swCutoff = 0)
#'
#' ## A list of datasets
#' val_all2 <- validate(miniTCGA, miniRAVmodel)
#' heatmapTable(val_all2, miniRAVmodel)
#'
#' @export
heatmapTable <- function(val_all, RAVmodel, ind = NULL, num.out = 5,
                         scoreCutoff = NULL, swCutoff = NULL,
                         clsizeCutoff = NULL,
                         breaks = c(0, 0.5, 1),
                         colors = c("white", "white smoke", "red"),
                         column_title = NULL, row_title = NULL,
                         whichPC = NULL, filterMessage = TRUE, ...) {

  score_ind <- which(colnames(val_all) == "score")
  sw_ind <- which(colnames(val_all) == "sw")

  ## If the validation result contains all PCs (`validate` with `level = "all"`)
  if (identical(colnames(val_all), paste0("PC", seq_len(8)))) {
    stop("'val_all' input should be created by `validate` function with
         `level = \"max\"`, not `level = \"all\"`.")
  }

  ## If the validation result is from the list of datasets
  if (length(score_ind) == 0) {
    res <- .heatmapTableMultiStudies(val_all, RAVmodel,
                                     scoreCutoff = scoreCutoff,
                                     breaks = breaks, colors = colors,
                                     column_title = column_title,
                                     row_title = row_title,
                                     filterMessage = filterMessage)
    return(res)
    stop
  }

  if (is.null(ind)) {
    val <- validatedSignatures(val_all, RAVmodel,
                               num.out = num.out, whichPC = whichPC,
                               indexOnly = FALSE, scoreCutoff = scoreCutoff,
                               swCutoff = swCutoff, clsizeCutoff = clsizeCutoff,
                               filterMessage = FALSE)
    dat <- val[,score_ind,drop=FALSE] %>% t
    sw <- val[,sw_ind,drop=FALSE] %>% as.numeric
  } else {
    row_ind <- which(rownames(val_all) %in% paste0("RAV", ind))
    val <- val_all[row_ind,]
    dat <- val[,score_ind,drop=FALSE] %>% t
    sw <- val[,sw_ind,drop=FALSE] %>% unlist %>% as.numeric
  }

  ## Define Heatmap Table Size
  if (is.null(column_title)) {
    column_title <- character(0)
    hmHeight <- nrow(dat) + 2.5
  } else {
    column_title <- column_title
    hmHeight <- nrow(dat) + 4
  }

  if (is.null(row_title)) {
    row_title <- character(0)
    hmWidth <- ncol(dat) + 2
  } else {
    row_title <- row_title
    hmWidth <- ncol(dat) + 3
  }

  ## Heatmap annotation representing Silhouette width of selected RAVs
  avg_sw <- ComplexHeatmap::anno_barplot(
    sw, baseline = 0, gp = grid::gpar(fill = ifelse(sw > 0, "red", "blue"),
                                      alpha = 0.5))
  gp <- grid::gpar(fontsize = 10)
  ha <- ComplexHeatmap::HeatmapAnnotation(avg.sw = avg_sw,
                                          annotation_name_side = "left",
                                          annotation_name_gp = gp)

  ## Check the RAV quality
  dat_ind <- gsub("RAV", "", colnames(dat)) %>% as.numeric()
  .lowQualityRAVs(RAVmodel, dat_ind, filterMessage)

  ## Draw Heatmap
  ComplexHeatmap::Heatmap(dat, col = circlize::colorRamp2(breaks, colors),
                          name = "Corr",
                          cluster_rows = FALSE,
                          cluster_columns = FALSE,
                          cell_fun = function(j, i, x, y, width, height, fill) {
                            grid::grid.text(sprintf("%.2f", dat[i, j]), x, y,
                                            gp = grid::gpar(fontsize = 8))
                          },
                          row_title = row_title,
                          row_title_gp = grid::gpar(fontsize = 11,
                                                    fontface = "bold"),
                          row_names_gp = grid::gpar(fontsize = 10),
                          row_names_side = "left",
                          row_names_max_width = unit(0.5, "cm"),
                          column_title = column_title,
                          column_title_gp = grid::gpar(fontsize = 11,
                                                       fontface = "bold"),
                          column_names_side = "bottom",
                          column_names_gp = grid::gpar(fontsize = 10),
                          column_names_rot = 90,
                          column_names_max_height = unit(1, "cm"),
                          heatmap_width = unit(hmWidth, "cm"),
                          heatmap_height = unit(hmHeight, "cm"),
                          top_annotation = ha, ...
  )
}
shbrief/PCAGenomicSignatures documentation built on May 3, 2023, 11:21 a.m.