#' Create summary of AEs for Alliance DSMB reports
#'
#' This function is design to replicate aerpt_alliance_macro.sas AE summary output for Alliance DSMB reports.
#'
#' @param cytox The toxicity dataset containing multiple observations per patient with one observation per AE > grade 0
#' @param id The patient ID variable used in the dataset
#' @param grade.cutoff Grade cutoff for minimum AE grade. Inclusive
#' @param rel.cutoff Attribution cutoff for minimum AE attribution. Inclusive
#' @param rel.include Value of 0 or 1. If 0, "Regardless of Attribution" printed in header. If 1, "At least possibly related" printed in header
#' @param byvar Variable used to separate summary by arm. If not present, "All Patients" printed for arm. Set to NULL if calculations are desired for all patients together.
#' @param arm.include Include "Arm" in table (1) or not (0). Default is 1.
#' @param arm.labels Option to include additional Arm labels in the table header. Add as vector of characters.
#' @param toxvar Variable containing numeric toxicity codes.
#' @param relvar Variable containing numeric relation values 1-5.
#' @param gradevar Grade variable, numeric.
#' @param bodysysvar Body system variable, character.
#' @return This function creates a summary of the AE events for the Alliance DSMB report
#' @examples
#'
#' #With data loaded for A041501
#'
#' crtlibn(d = 'A041501')
#'
#' all.summary <- aerpt.summary(cytox, id="dcntr_id", byvar="arm",
#' grade.cutoff = 3, rel.cutoff = 0, rel.include = 0)
#' all.summary$table
#'
#' @export
#' @author Sawyer Jacobson
#' @author Adam Pettinger
#'
# Last Edited: 2/29/2020
aerpt.summary <- function(cytox, id, grade.cutoff = 1, rel.cutoff = 0, rel.include = 1,
byvar = "arm", arm.include = 1, arm.labels = NULL,
toxvar = "toxicity", relvar = "rel_smed",
gradevar = "grade", bodysysvar = "bodysys",
ctc_version = 5)
{
cytox <- as.data.frame(cytox)
arm.labels <- arm.labels
if(ctc_version == 3){
bodysysvar = "bodysys"
} else if(ctc_version %in% c(4, 5)){
bodysysvar = 'soc'
heme_list = c(10002272, 10007839, 10025256, 10029366, 10035528, 10048580, 10049182,
10005329, 10019150, 10019491, 10024378, 10025258, 10028533, 10041633,
10055599, 10065973)
}
if(is.null(byvar)) arm.include = 0
###### Make sure to use the correct ID#######
if(rel.include == 1){
rel = "At least possibly related\n"
} else {
rel = "Regardless of Attribution\n"
}
# cytox <- cytox %>%
# rename(dcntr_id = tidyselect::all_of(id),
# toxicity = tidyselect::all_of(toxvar),
# grade = tidyselect::all_of(gradevar),
# rel_smed = tidyselect::all_of(relvar))
cytox <- cytox %>%
dplyr::select(dcntr_id = tidyselect::all_of(id),
toxicity = tidyselect::all_of(toxvar),
grade = tidyselect::all_of(gradevar),
rel_smed = tidyselect::all_of(relvar),
bodysys = tidyselect::all_of(bodysysvar),
arm = tidyselect::all_of(byvar),
cycle) %>%
mutate_at(vars(arm), as.character) %>%
filter(cycle > 0)
###### Make sure the arm exists and to use the correct arm otherwise use All Patients#######
# if (any(colnames(cytox) == byvar)) {
# cytox <- cytox %>%
# rename(arm = tidyselect::all_of(byvar)) %>%
# mutate(arm = as.character(arm))
# } else {
# cytox$arm = rep("A", length(cytox$dcntr_id))
# }
####Will need to get the number eval by each group
###take out all the baseline toxicity if there are any
# if (any(colnames(cytox) == "cycle")){
# cytox = cytox[which(cytox$cycle>0),]
# }
unique.list <- cytox %>%
distinct(dcntr_id, .keep_all = TRUE)
num.eval = base::table(unique.list$arm) %>%
data.frame() %>%
mutate(arm = as.character(Var1)) %>%
dplyr::select(-Var1)
if(arm.include == 0) TRUE
else if(!is.null(arm.labels) & length(arm.labels) != nrow(num.eval)) stop('Number of arm levels not equal to number of arm labels')
#######Now, lose all the grade 0 and cycle 0#####
###IF Cycle exists, which it won't in my theradex data
# if (any(colnames(cytox) == "cycle")){
cytox <- cytox %>%
mutate(rel_smed = ifelse(is.na(rel_smed), 1, rel_smed)) %>%
filter(grade >= grade.cutoff & rel_smed >= rel.cutoff)
# }
######Add toxterm and SOC##########
data("tox_codes")
#formats <- haven::read_sas("/people/ccs4/ccsicprd/cc-sas-all/sasdata/mart/xstudy/toxcodes.sas7bdat") %>%
tox_codes <- tox_codes %>%
select("v5Meddra_Term", "v5Meddra_Code", "BODYSYS", "soc") %>%
rename(v5meddra.term = v5Meddra_Term, v5meddra.code = v5Meddra_Code, bodysys = BODYSYS)
tox_codes <- tox_codes %>%
filter(!is.na(v5meddra.code)) %>%
distinct(v5meddra.code, .keep_all = TRUE) %>%
rename(toxicity = v5meddra.code,
toxterm = v5meddra.term)
# if(any(names(cytox) == bodysysvar))
# {
# cytox <- cytox %>%
# rename(bodysys = all_of(bodysysvar))
# } else
# {
# cytox <- cytox %>%
# left_join(tox_codes %>% select(toxicity, bodysys = BODYSYS) %>% distinct(toxicity, .keep_all = TRUE), by = "toxicity")
# }
########Find each of the categories ########
worst.grade <- cytox %>%
group_by(dcntr_id) %>%
slice(which.max(grade)) %>%
mutate(category = "Total") %>%
dplyr::select(dcntr_id, category, grade, arm)
if(bodysysvar == "bodysys"){
worst.heme <- cytox %>%
filter(bodysys == "1") %>%
group_by(dcntr_id) %>%
slice(which.max(grade)) %>%
mutate(category = "Heme") %>%
dplyr::select(dcntr_id, category, grade, arm)
worst.nonheme <- cytox %>%
filter (bodysys != "1")%>%
group_by(dcntr_id) %>%
slice(which.max(grade)) %>%
mutate(category = "Non-Heme") %>%
dplyr::select(dcntr_id, category, grade, arm)
} else if(bodysysvar == 'soc'){
worst.heme <- cytox %>%
filter(toxicity %in% heme_list) %>%
group_by(dcntr_id) %>%
slice(which.max(grade)) %>%
mutate(category = "Heme") %>%
dplyr::select(dcntr_id, category, grade, arm)
worst.nonheme <- cytox %>%
filter(toxicity %nin% heme_list)%>%
group_by(dcntr_id) %>%
slice(which.max(grade)) %>%
mutate(category = "Non-Heme") %>%
dplyr::select(dcntr_id, category, grade, arm)
}
table1.raw <- full_join(worst.heme, worst.nonheme, by = c("dcntr_id", "category", "grade", "arm")) %>%
full_join(worst.grade, by = c("dcntr_id", "category", "grade", "arm"))
template <- data.frame(tidyr::crossing(category = c("Heme", "Non-Heme", "Total"), grade = grade.cutoff:5, arm = as.character(unique(cytox$arm))))
newtable <- table1.raw %>%
group_by(category, arm, grade) %>%
summarise(count = n()) %>%
full_join(template, by = c("category", "grade", "arm")) %>%
mutate(count = ifelse(is.na(count), as.integer(0), count)) %>%
left_join(num.eval, by = 'arm') %>%
mutate(percent = round((count/Freq)*100, digits = 1),
grade_char = paste0("Grade ", grade, " Event"),
percent_char = ifelse(count == 0, "(0.0%)", paste0('(', percent, '%)'))) %>%
dplyr::select(category, grade_char, arm, count, percent_char) %>%
ungroup()
newtable <- newtable %>%
mutate(category = factor(category, levels = c("Total", "Heme", "Non-Heme"),
labels = c("Total", "Hematologic Adverse Events", "Non-Hematologic Adverse Events"))) %>%
arrange(category, grade_char, arm)
categories <- newtable %>%
count(category)
evaluable <- cytox %>%
filter(arm != '') %>%
distinct(arm) %>%
nrow()
eval <- character(evaluable)
for(i in 1:evaluable){
if(!is.null(arm.labels) & arm.include == 1){
eval[i] <- paste0(arm.labels[i]," (Arm ", num.eval[i, 2], "=", num.eval[i, 1], ")")
}else if (arm.include == 1 ){
eval[i] <- paste0("Arm ", num.eval[i, 2], "=", num.eval[i, 1])
} else{
eval[i] <- as.integer(num.eval[i, 1])
}
}
if(!is.null(arm.labels) & arm.include == 1){
arms <- paste(eval, sep = '', collapse = "\n")
summary_title <- paste0("Summary of Grade ", grade.cutoff, "+ Adverse Events\n",
rel,
"Number of Evaluable Patients:\n",
arms)
}else if(is.null(arm.labels) & arm.include == 1){
arms <- paste(eval, sep = '', collapse = "\t")
summary_title <- paste0("Summary of Grade ", grade.cutoff, "+ Adverse Events\n",
rel,
"Number of Evaluable Patients:\n",
arms)
} else if(arm.include == 0){
arms <- sum(as.numeric(eval))
summary_title <- paste0("Summary of Grade ", grade.cutoff, "+ Adverse Events\n",
rel,
"Number of Evaluable Patients: ",
arms)
}
myHeader <- c(summary_title = 4)
names(myHeader) <- c(summary_title)
new_flex_table <- newtable
names(new_flex_table) <- c("Category", "Patients with a maximum:", "Arm", "n", "(%)")
if(arm.include == 1){
all.summary.table <- new_flex_table %>%
as_grouped_data(groups = c('Category')) %>%
as_flextable(hide_grouplabel = TRUE) %>%
bold(j = 1, i = ~ !is.na(Category), bold = TRUE, part = "body" ) %>%
bold(bold = TRUE, part = "footer") %>%
italic(j = 4, italic = TRUE, part = "body") %>%
fontsize(size = 10, part = "all") %>%
font(fontname = "Arial", part = "all") %>%
merge_v(j = 2, part = "body") %>%
add_header_lines(values = summary_title) %>%
add_footer_lines(values = "Note: Summaries are based on available patient data") %>%
theme_box() %>%
width(j = c(1:4), width = c(3.5, .5, .4, .74)) %>%
align(align = "center", part = "header") %>%
align(j = 1, i = ~ is.na(Category), align = "center", part = "body") %>%
align(j = c(2, 3, 4), align = "right", part = "body") %>%
align(i = 2, j = 1, align = "left", part = "header")
} else if(arm.include == 0){
all.summary.table <- new_flex_table %>%
select(-Arm) %>%
as_grouped_data(groups = c('Category')) %>%
as_flextable(hide_grouplabel = TRUE) %>%
bold(j = 1, i = ~ !is.na(Category), bold = TRUE, part = "body" ) %>%
bold(bold = TRUE, part = "footer") %>%
italic(j = 3, italic = TRUE, part = "body") %>%
fontsize(size = 10, part = "all") %>%
font(fontname = "Arial", part = "all") %>%
merge_v(j = 2, part = "body") %>%
add_header_lines(values = summary_title) %>%
add_footer_lines(values = "Note: Summaries are based on available patient data") %>%
theme_box() %>%
width(j = c(1:3), width = c(3.5, .4, .74)) %>%
align(align = "center", part = "header") %>%
align(j = 1, i = ~ is.na(Category), align = "center", part = "body") %>%
align(j = c(2, 3), align = "right", part = "body") %>%
align(i = 2, j = 1, align = "left", part = "header")
}
out <- list(table = all.summary.table, data = newtable)
class(out) <- "aerpt.summary"
return(out)
}
#' @export
print.aerpt.summary <- function(x, ...)
{
print(x$table)
invisible(x)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.