#' Environmental and spatial cross-validation
#'
#' @description This function explores different numbers of environmental partitions (clusters)
#' based on the K-means clustering algorithm and returns the number of partitions best suited for
#' a given presence, presence-absences, or presence-pseudo-absences database. Selection of the
#' best number of partitions is performed automatically considering spatial autocorrelation,
#' environmental similarity, and the number of presence and/or absence records in each partition.
#'
#' @param env_layer SpatRaster. Raster with environmental
#' variable. This will be used to evaluate spatial autocorrelation and
#' environmental similarity between training and testing partitions. Because this function
#' calculate dissimilarity based on Euclidean distances, it can only be used with continuous
#' variables
#' @param data data.frame. Data.frame or tibble object with presence
#' (or presence-absence, or presences-pseudo-absence) records, and coordinates
#' @param x character. Column name with spatial x coordinates
#' @param y character. Column name with spatial y coordinates
#' @param pr_ab character. Column with presences, presence-absence,
#' or pseudo-absence. Presences must be represented by 1 and absences by 0
#' @param min_n_groups integer. Minimum number of groups to be tested. Default 2.
#' @param max_n_groups integer. Maximum number of groups to be tested. Default 10.
#' @param min_occ numeric. Minimum number of presences or absences in a partition fold.
#' The min_occ value should be base on the amount of predictors in order to avoid over-fitting
#' or error when fitting models for a given fold. Default 10.
#' @param prop numeric. Proportion of point used for testing autocorrelation between
#' groups (values > 0 and <=1). The smaller this number is, the faster the function will work.
#' Default 0.5
#'
#' @return
#' A list with:
#' \itemize{
#' \item part: A tibble object with information used in 'data' arguments and a additional column
#' .part with partition group.
#' \item best_part_info: A tibble with information about the best partition. It contains the
#' number of partition (n_groups), standard deviation of presences (sd_p), standard deviation
#' of absences (sd_a), Moran's I spatial autocorrelation (spa_auto) and environmental similarity
#' based on Euclidean distance (env_sim)
#' }
#'
#' @details The part_sblock allows test with different numbers of partitions defined in the
#' envirnomental clusters delimited the K-mean cluster algorithm. This function explores a range
#' of environmental clusters and automatically selects best number of cluster for a given given
#' presence, presence-absences, or presence-pseudo-absences dataset. Such selection of number of
#' clusters is based on an optimization procedure that explores partition size in three dimensions
#' determined by spatial autocorrelation (measured by Moran's I), environmental similarity
#' (Euclidean distance), and difference in the amount of data among clusters
#' (Standard Deviation - SD; Velazco et al., 2019). This procedure will cyclically select
#' those partitions with autocorrelation values less than the lowest quartile of Morans I, then
#' those with environmental similarity values greater than the third quartile of the Euclidean
#' distances than those with a difference in the amount of data less than the lowest quartile of SD.
#' This selection is repeated until only one partition is retained (Velazco et al., 2019). The
#' main benefit of this partition selection are i) this is not subjective, ii) balances the
#' environmental similarity and special autocorrelation between partitions, and iii) controls
#' the partition selection with few data that may be problematic for model fitting
#' ("min_occ" argument)..
#'
#' Partitions geographically structured tend to evaluate model transferability more directly than
#' conventional ones (e.g., those performed by \code{\link{part_random}}) (Roberts et al., 2017;
#' Santini et al., 2021), being relevant for models that want to be used for projections in other
#' regions outside the calibration area or for other periods.
#'
#' This function can interact with \code{\link{get_block}}, \code{\link{sample_background}},
#' and \code{\link{sample_pseudoabs}} for sampling background points or pseudo-absences within
#' spatial partition broups
#'
#' @references
#' \itemize{
#' \item Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G.,
#' Hauenstein, S., Lahoz-Monfort, J. J., Schroder, B., Thuiller, W., Warton, D. I., Wintle, B. A.,
#' Hartig, F., & Dormann, C. F. (2017). Cross-validation strategies for data with temporal, spatial,
#' hierarchical, or phylogenetic structure. Ecography, 40,
#' 913-929. https://doi.org/10.1111/ecog.02881
#' \item Santini, L., Benitez-Lopez, A., Maiorano, L., Cengic, M., & Huijbregts, M. A. J. (2021).
#' Assessing the reliability of species distribution projections in climate change research.
#' Diversity and Distributions, ddi.13252. https://doi.org/10.1111/ddi.13252
#' \item Velazco, S. J. E., Villalobos, F., Galvao, F., & De Marco Junior, P. (2019). A dark
#' scenario for Cerrado plant species: Effects of future climate, land use and protected areas
#' ineffectiveness. Diversity and Distributions, 25(4), 660-673. https://doi.org/10.1111/ddi.12886
#' }
#'
#' @export
#' @importFrom dplyr tibble pull bind_cols group_by count mutate filter select slice_sample
#' @importFrom stats complete.cases kmeans sd
#' @importFrom terra extract
#' @importFrom utils combn
#'
#' @seealso \code{\link{part_random}}, \code{\link{part_sblock}}, and \code{\link{part_sband}}
#'
#' @examples
#' \dontrun{
#' require(terra)
#' require(ggplot2)
#'
#' f <- system.file("external/somevar.tif", package = "flexsdm")
#' somevar <- terra::rast(f)
#'
#' # Select a species
#' spp1 <- spp %>% dplyr::filter(species == "sp1")
#'
#' part1 <- part_senv(
#' env_layer = somevar,
#' data = spp1,
#' x = "x",
#' y = "y",
#' pr_ab = "pr_ab",
#' min_n_groups = 2,
#' max_n_groups = 10,
#' min_occ = 10,
#' prop = 0.2
#' )
#'
#' part1
#'
#' ggplot(part1$part, aes(x, y, col = factor(.part))) +
#' geom_point(aes(shape = factor(pr_ab)))
#'
#' ggplot(part1$part, aes(x, y, col = factor(.part))) +
#' geom_point(aes(shape = factor(pr_ab))) +
#' facet_wrap(. ~ .part)
#'
#' ggplot(part1$part, aes(x, y, col = factor(.part))) +
#' geom_point(aes(shape = factor(pr_ab))) +
#' facet_wrap(. ~ pr_ab)
#' }
part_senv <- function(env_layer,
data,
x,
y,
pr_ab,
min_n_groups = 2,
max_n_groups = 10,
min_occ = 10,
prop = 0.5) {
group <- NULL
# Select columns
data <- data.frame(data)
data <- data[, c(pr_ab, x, y)]
colnames(data) <- c("pr_ab", "x", "y")
if (any(!unique(data[, "pr_ab"][[1]]) %in% c(0, 1))) {
stop(
"values in pr_ab column did not match with 0 and 1:
unique list values in pr_ab column are: ",
paste(unique(data[, "pr_ab"]), collapse = " ")
)
}
# Extract data
data <- dplyr::tibble(data, terra::extract(env_layer, data[, 2:3])[-1])
filt <- stats::complete.cases(data)
if (sum(!filt) > 0) {
data <- data[filt, ]
message(sum(!filt), " rows were excluded from database because NAs were found")
}
rm(filt)
# Vector with presences and absences
pa <- data %>%
dplyr::pull(pr_ab) %>%
unique()
# Vector with grid cell-size used
cell_size <- seq(min_n_groups, max_n_groups)
message(
"The following grid cell sizes will be tested:\n",
paste(round(cell_size, 2), collapse = " | "),
"\n"
)
message("Searching best partition...\n")
# k-mean algorithm
part <- list()
for (i in 1:length(cell_size)) {
part[[i]] <- stats::kmeans(data[, -1], centers = cell_size[i])$cluster
}
names(part) <- paste0(".g", cell_size)
# Bind groups
part <- dplyr::bind_cols(part)
### Remove problematic partition
n_records <- apply(part, 2, function(x) {
dplyr::tibble(x, data[1]) %>%
dplyr::group_by(x, pr_ab) %>%
dplyr::count() %>%
dplyr::mutate(filt = (n <= min_occ)) # 2
})
filt <- sapply(n_records, function(x) any(x %>% dplyr::pull("filt")))
if (sum(!filt) == 0) {
message("It was not possible to find a good partition. Try to change values in 'min_n_groups' and 'max_n_groups'")
return(NA)
}
n_records <- n_records[!filt]
part <- part[!filt]
# Perform SD
sd_p <- sapply(n_records, function(x) {
x %>%
dplyr::filter(pr_ab == 1) %>%
dplyr::pull(n) %>%
stats::sd()
})
sd_a <- sapply(n_records, function(x) {
x %>%
dplyr::filter(pr_ab == 0) %>%
dplyr::pull(n) %>%
sd()
})
rm(n_records)
# # Environmental similarity between train and test based on euclidean -----
Env.P <- data %>% dplyr::select(-pr_ab, -x, -y)
env_sim <- rep(NA, ncol(part))
for (i in 1:ncol(part)) {
cmb <- unique(part[, i][[1]]) %>% utils::combn(2)
Env.P1 <- cbind(part[i], Env.P)
Env.P1 <- Env.P1[stats::complete.cases(Env.P1), ]
Env.P1 <- stats::complete.cases(Env.P1[, -1], Env.P1[, 1])
euq_c <- list()
for (r in 1:ncol(cmb)) {
euq_c[[r]] <- euc_dist(Env.P1[[cmb[1, r]]], Env.P1[[cmb[2, r]]]) %>% mean()
}
env_sim[i] <- euq_c %>%
unlist() %>%
mean()
}
# # I moran-----
spa_auto <- rep(NA, ncol(part))
dist <- euc_dist(
data[, c("x", "y")] %>% as.data.frame(),
data[, c("x", "y")] %>% as.data.frame()
)
dist <- 1 / dist
diag(dist) <- 0
dist[which(dist == Inf)] <- 0
for (p in 1:ncol(part)) {
cmb <- unique(part[, p][[1]]) %>% utils::combn(2)
imoran_grid_c <- rep(NA, ncol(cmb))
dff <- dplyr::tibble(nrow = 1:nrow(part), data["pr_ab"], group = part[p][[1]])
for (c in 1:ncol(cmb)) {
filt <- dff %>%
dplyr::group_by(group, pr_ab) %>%
dplyr::slice_sample(prop = prop) %>%
dplyr::pull(nrow) %>%
sort()
odd <- which((part[p][[1]] == cmb[1, c])[filt])
even <- which((part[p][[1]] == cmb[2, c])[filt])
dist2 <- dist[filt, filt]
dist2[odd, odd] <- 0
dist2[even, even] <- 0
mins <- apply(dist2, 2, function(x) {
max(x, na.rm = TRUE)
})
for (i in 1:length(mins)) {
dist2[, i] <- ifelse(dist2[, i] == mins[i], mins[i], 0)
}
if (nrow(data) < 3) {
imoran_grid_c[c] <- NA
} else {
im <- sapply(
data[filt, names(env_layer)],
function(x) {
morani(x,
dist2,
na.rm = TRUE,
scaled = TRUE
)
}
)
imoran_grid_c[c] <- mean(abs(im))
}
}
spa_auto[p] <- mean(imoran_grid_c)
}
# # SELLECTION OF THE BEST CELL SIZE----
Opt <-
if (any(unique(pa) == 0)) {
data.frame(
n_parition = 1:ncol(part),
n_groups = gsub(".g", "", colnames(part)),
round(
data.frame(sd_p, sd_a, spa_auto, env_sim),
3
)
)
} else {
data.frame(n_groups = gsub(".g", "", colnames(part)), round(
data.frame(
sd_p, spa_auto, env_sim
),
3
))
}
Opt2 <- Opt
while (nrow(Opt2) > 1) {
# SD presence
Opt2 <-
Opt2[which(Opt2$sd_p <= summary(Opt2$sd_p)[2]), ]
if (nrow(Opt2) == 1) {
break
}
# SD absences
if (any(unique(pa) == 0)) {
Opt2 <-
Opt2[which(Opt2$sd_a <= summary(Opt2$sd_a)[2]), ]
if (nrow(Opt2) == 1) {
break
}
}
# I MORAN
if (nrow(Opt2) == 1) {
break
}
Opt2 <-
Opt2[which(Opt2$spa_auto <= summary(Opt2$spa_auto)[2]), ]
if (nrow(Opt2) == 1) {
break
}
# Euclidean
Opt2 <-
Opt2[which(Opt2$env_sim >= summary(Opt2$env_sim)[5]), ]
if (nrow(Opt2) == 1) {
break
}
if ((length(unique(Opt2$spa_auto)) == 1) &&
(length(unique(Opt2$env_sim)) == 1) &&
(length(unique(Opt2$sd_p)) == 1)) {
Opt2 <- Opt2[nrow(Opt2), ]
}
}
# Final data.frame result----
result <- data.frame(data, .part = c(part[, rownames(Opt2)])[[1]])
result <- result %>% dplyr::select(-names(env_layer))
colnames(result) <- c("pr_ab", "x", "y", ".part")
result <- result[c("x", "y", "pr_ab", ".part")]
# Final data.frame result2----
result <- list(
part = dplyr::tibble(result),
best_part_info = dplyr::tibble(Opt2)
)
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.