#
# pcf.R
#
# $Revision: 1.71 $ $Date: 2022/03/24 01:27:25 $
#
#
# calculate pair correlation function
# from point pattern (pcf.ppp)
# or from estimate of K or Kcross (pcf.fv)
# or from fasp object
#
#
pcf <- function(X, ...) {
UseMethod("pcf")
}
pcf.ppp <- function(X, ..., r=NULL,
kernel="epanechnikov", bw=NULL, stoyan=0.15,
correction=c("translate", "Ripley"),
divisor=c("r", "d"),
var.approx=FALSE,
domain=NULL, ratio=FALSE,
close=NULL)
{
verifyclass(X, "ppp")
# r.override <- !is.null(r)
win <- Window(X)
areaW <- area(win)
npts <- npoints(X)
lambda <- npts/areaW
lambda2area <- areaW * lambda^2
kernel <- match.kernel(kernel)
rmaxdefault <- rmax.rule("K", win, lambda)
if(!is.null(domain)) {
# estimate based on contributions from a subdomain
domain <- as.owin(domain)
if(!is.subset.owin(domain, win))
stop(paste(dQuote("domain"),
"is not a subset of the window of X"))
# trick pcfdot() into doing it
indom <- factor(inside.owin(X$x, X$y, domain), levels=c(FALSE,TRUE))
g <- pcfdot(X %mark% indom,
i="TRUE",
r=r,
correction=correction, kernel=kernel, bw=bw, stoyan=stoyan,
divisor=divisor,
...)
if(!ratio) {
## relabel
g <- rebadge.fv(g, quote(g(r)), "g")
} else {
## construct ratfv object
denom <- sum(indom == "TRUE") * lambda
g <- ratfv(as.data.frame(g), NULL, denom,
"r", quote(g(r)),
"theo", NULL, c(0, rmaxdefault),
attr(g, "labl"), attr(g, "desc"), fname="g",
ratio=TRUE)
}
unitname(g) <- unitname(X)
if(var.approx)
warning("var.approx is not implemented when 'domain' is given")
return(g)
}
correction.given <- !missing(correction)
correction <- pickoption("correction", correction,
c(isotropic="isotropic",
Ripley="isotropic",
trans="translate",
translate="translate",
translation="translate",
good="translate",
best="best",
none="none"),
multi=TRUE)
correction <- implemented.for.K(correction, win$type, correction.given)
divisor <- match.arg(divisor)
# bandwidth
if(is.null(bw) && (kernel == "epanechnikov")) {
# Stoyan & Stoyan 1995, eq (15.16), page 285
h <- stoyan /sqrt(lambda)
hmax <- h
# conversion to standard deviation
bw <- h/sqrt(5)
} else if(is.numeric(bw)) {
# standard deviation of kernel specified
# upper bound on half-width
hmax <- 3 * bw
} else {
# data-dependent bandwidth selection: guess upper bound on half-width
hmax <- 2 * stoyan /sqrt(lambda)
}
########## r values ############################
# handle arguments r and breaks
breaks <- handle.r.b.args(r, NULL, win, rmaxdefault=rmaxdefault)
if(!(breaks$even))
stop("r values must be evenly spaced")
# extract r values
r <- breaks$r
rmax <- breaks$max
# recommended range of r values for plotting
alim <- c(0, min(rmax, rmaxdefault))
# arguments for 'density'
denargs <- resolve.defaults(list(kernel=kernel, bw=bw),
list(...),
list(n=length(r), from=0, to=rmax),
.StripNull = TRUE)
#################################################
# compute pairwise distances
if(npts > 1) {
needall <- any(correction %in% c("translate", "isotropic"))
if(is.null(close)) {
what <- if(needall) "all" else "ijd"
close <- closepairs(X, rmax + hmax, what=what)
} else {
#' check 'close' has correct format
needed <- if(!needall) c("i", "j", "d") else
c("i", "j", "xi", "yi", "xj", "yj", "dx", "dy", "d")
if(any(is.na(match(needed, names(close)))))
stop(paste("Argument", sQuote("close"),
"should have components named",
commasep(sQuote(needed))),
call.=FALSE)
}
dIJ <- close$d
} else {
undefined <- rep(NaN, length(r))
}
# initialise fv object
df <- data.frame(r=r, theo=rep.int(1,length(r)))
out <- ratfv(df,
NULL, lambda2area,
"r", quote(g(r)),
"theo", NULL,
alim,
c("r","%s[Pois](r)"),
c("distance argument r", "theoretical Poisson %s"),
fname="g",
ratio=ratio)
###### compute #######
bw.used <- NULL
if(any(correction=="none")) {
#' uncorrected
if(npts > 1) {
kdenN <- sewpcf(dIJ, 1, denargs, lambda2area, divisor)
gN <- kdenN$g
bw.used <- attr(kdenN, "bw")
} else gN <- undefined
if(!ratio) {
out <- bind.fv(out,
data.frame(un=gN),
"hat(%s)[un](r)",
"uncorrected estimate of %s",
"un")
} else {
out <- bind.ratfv(out,
data.frame(un=gN * lambda2area),
lambda2area,
"hat(%s)[un](r)",
"uncorrected estimate of %s",
"un")
}
}
if(any(correction=="translate")) {
# translation correction
if(npts > 1) {
edgewt <- edge.Trans(dx=close$dx, dy=close$dy, W=win, paired=TRUE)
kdenT <- sewpcf(dIJ, edgewt, denargs, lambda2area, divisor)
gT <- kdenT$g
bw.used <- attr(kdenT, "bw")
} else gT <- undefined
if(!ratio) {
out <- bind.fv(out,
data.frame(trans=gT),
"hat(%s)[Trans](r)",
"translation-corrected estimate of %s",
"trans")
} else {
out <- bind.ratfv(out,
data.frame(trans=gT * lambda2area),
lambda2area,
"hat(%s)[Trans](r)",
"translation-corrected estimate of %s",
"trans")
}
}
if(any(correction=="isotropic")) {
# Ripley isotropic correction
if(npts > 1) {
XI <- ppp(close$xi, close$yi, window=win, check=FALSE)
edgewt <- edge.Ripley(XI, matrix(dIJ, ncol=1))
kdenR <- sewpcf(dIJ, edgewt, denargs, lambda2area, divisor)
gR <- kdenR$g
bw.used <- attr(kdenR, "bw")
} else gR <- undefined
if(!ratio) {
out <- bind.fv(out,
data.frame(iso=gR),
"hat(%s)[Ripley](r)",
"isotropic-corrected estimate of %s",
"iso")
} else {
out <- bind.ratfv(out,
data.frame(iso=gR * lambda2area),
lambda2area,
"hat(%s)[Ripley](r)",
"isotropic-corrected estimate of %s",
"iso")
}
}
# sanity check
if(is.null(out)) {
warning("Nothing computed - no edge corrections chosen")
return(NULL)
}
## variance approximation
## Illian et al 2008 p 234 equation 4.3.42
if(var.approx) {
gr <- if(any(correction == "isotropic")) gR else gT
# integral of squared kernel
intk2 <- kernel.squint(kernel, bw.used)
# isotropised set covariance of window
gWbar <- as.function(rotmean(setcov(win), result="fv"))
vest <- gr * intk2/(pi * r * gWbar(r) * lambda^2)
if(!ratio) {
out <- bind.fv(out,
data.frame(v=vest),
"v(r)",
"approximate variance of %s",
"v")
} else {
vden <- rep((npts-1)^2, length(vest))
vnum <- vden * vest
out <- bind.ratfv(out,
data.frame(v=vnum),
data.frame(v=vden),
"v(r)",
"approximate variance of %s",
"v")
}
}
## Finish off
## default is to display all corrections
formula(out) <- . ~ r
fvnames(out, ".") <- setdiff(rev(colnames(out)), c("r", "v"))
##
unitname(out) <- unitname(X)
## copy to other components
if(ratio)
out <- conform.ratfv(out)
attr(out, "bw") <- bw.used
return(out)
}
# Smoothing Estimate of Weighted Pair Correlation
# d = vector of relevant distances
# w = vector of edge correction weights (in normal use)
# denargs = arguments to density.default
# lambda2area = constant lambda^2 * areaW (in normal use)
sewpcf <- function(d, w, denargs, lambda2area, divisor=c("r","d")) {
divisor <- match.arg(divisor)
nw <- length(w)
if(nw != length(d) && nw != 1)
stop("Internal error: incorrect length of weights vector in sewpcf")
if(divisor == "d") {
w <- w/d
if(!all(good <- is.finite(w))) {
nbad <- sum(!good)
warning(paste(nbad, "infinite, NA or NaN",
ngettext(nbad, "contribution was", "contributions were"),
"deleted from pcf estimate with divisor='d'.",
"Fraction deleted: ",
paste0(round(100 * nbad/length(w), 2), "%")),
call.=FALSE)
d <- d[good]
w <- w[good]
}
nw <- length(w)
}
kden <- unnormdensity(x=d, weights=w, defaults=denargs)
r <- kden$x
y <- kden$y
if(divisor == "r")
y <- y/r
g <- y/(2 * pi * lambda2area)
result <- data.frame(r=r,g=g)
attr(result, "bw") <- kden$bw
return(result)
}
#
#---------- OTHER METHODS FOR pcf --------------------
#
"pcf.fasp" <- function(X, ..., method="c") {
verifyclass(X, "fasp")
Y <- X
Y$title <- paste("Array of pair correlation functions",
if(!is.null(X$dataname)) "for",
X$dataname)
# go to work on each function
for(i in seq_along(X$fns)) {
Xi <- X$fns[[i]]
PCFi <- pcf.fv(Xi, ..., method=method)
Y$fns[[i]] <- PCFi
if(is.fv(PCFi))
Y$default.formula[[i]] <- formula(PCFi)
}
return(Y)
}
pcf.fv <- local({
callmatched <- function(fun, argue) {
formalnames <- names(formals(fun))
formalnames <- formalnames[formalnames != "..."]
do.call(fun, argue[names(argue) %in% formalnames])
}
pcf.fv <- function(X, ..., method="c") {
verifyclass(X, "fv")
# extract r and the recommended estimate of K
r <- with(X, .x)
K <- with(X, .y)
alim <- attr(X, "alim")
# remove NA's
ok <- !is.na(K)
K <- K[ok]
r <- r[ok]
switch(method,
a = {
ss <- callmatched(smooth.spline,
list(x=r, y=K, ...))
dK <- predict(ss, r, deriv=1)$y
g <- dK/(2 * pi * r)
},
b = {
y <- K/(2 * pi * r)
y[!is.finite(y)] <- 0
ss <- callmatched(smooth.spline,
list(x=r, y=y, ...))
dy <- predict(ss, r, deriv=1)$y
g <- dy + y/r
},
c = {
z <- K/(pi * r^2)
z[!is.finite(z)] <- 1
ss <- callmatched(smooth.spline,
list(x=r, y=z, ...))
dz <- predict(ss, r, deriv=1)$y
g <- (r/2) * dz + z
},
d = {
z <- sqrt(K)
z[!is.finite(z)] <- 0
ss <- callmatched(smooth.spline,
list(x=r, y=z, ...))
dz <- predict(ss, r, deriv=1)$y
g <- z * dz/(pi * r)
},
stop(paste("unrecognised method", sQuote(method)))
)
# pack result into "fv" data frame
Z <- fv(data.frame(r=r,
theo=rep.int(1, length(r)),
pcf=g),
"r", substitute(g(r), NULL), "pcf", . ~ r, alim,
c("r", "%s[pois](r)", "%s(r)"),
c("distance argument r",
"theoretical Poisson value of %s",
"estimate of %s by numerical differentiation"),
fname="g")
unitname(Z) <- unitname(X)
return(Z)
}
pcf.fv
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.