#
# linnet.R
#
# Linear networks
#
# $Revision: 1.89 $ $Date: 2024/05/01 06:26:34 $
#
# An object of class 'linnet' defines a linear network.
# It includes the following components
#
# vertices (ppp) vertices of network
#
# m (matrix) adjacency matrix
#
# lines (psp) edges of network
#
# dpath (matrix) matrix of shortest path distances
# between each pair of vertices
#
# from, to (vectors) map from edges to vertices.
# The endpoints of the i-th segment lines[i]
# are vertices[from[i]] and vertices[to[i]]
#
#
# FUNCTIONS PROVIDED:
# linnet creates an object of class "linnet" from data
# print.linnet print an object of class "linnet"
# plot.linnet plot an object of class "linnet"
#
# Make an object of class "linnet" from the minimal data
linnet <- function(vertices, m, edges, sparse=FALSE, warn=TRUE) {
if(missing(m) && missing(edges))
stop("specify either m or edges")
if(!missing(m) && !missing(edges))
stop("do not specify both m and edges")
# validate inputs
stopifnot(is.ppp(vertices))
nv <- npoints(vertices)
if(nv <= 1) {
m <- matrix(FALSE, nv, nv)
from <- to <- integer(0)
} else if(!missing(m)) {
# check logical matrix or logical sparse matrix
if(!is.matrix(m) && !inherits(m, c("lgCMatrix", "lgTMatrix")))
stop("m should be a matrix or sparse matrix")
stopifnot(is.logical(m) && isSymmetric(m))
if(nrow(m) != vertices$n)
stop("dimensions of matrix m do not match number of vertices")
if(any(diag(m))) {
warning("diagonal entries of the matrix m should not be TRUE; ignored")
diag(m) <- FALSE
}
sparse <- !is.matrix(m)
## determine 'from' and 'to' vectors
ij <- which(m, arr.ind=TRUE)
ij <- ij[ ij[,1L] < ij[,2L], , drop=FALSE]
from <- ij[,1L]
to <- ij[,2L]
} else {
## check (from, to) pairs
stopifnot(is.matrix(edges) && ncol(edges) == 2)
if(any((edges %% 1) != 0))
stop("Entries of edges list should be integers")
if(any(self <- (edges[,1L] == edges[,2L]))) {
warning("edge list should not join a vertex to itself; ignored")
edges <- edges[!self, , drop=FALSE]
}
np <- npoints(vertices)
if(any(edges > np))
stop("index out-of-bounds in edges list")
from <- edges[,1L]
to <- edges[,2L]
## avoid duplication in either sense
up <- (from < to)
ee <- cbind(ifelse(up, from , to), ifelse(up, to, from))
if(anyDuplicated(ee)) {
warning("Duplicated segments were ignored", call.=FALSE)
ok <- !duplicated(ee)
from <- from[ok]
to <- to[ok]
}
## convert to adjacency matrix
if(!sparse) {
m <- matrix(FALSE, np, np)
m[edges] <- TRUE
} else
m <- sparseMatrix(i=from, j=to, x=TRUE, dims=c(np, np))
m <- m | t(m)
}
# create line segments
xx <- vertices$x
yy <- vertices$y
lines <- psp(xx[from], yy[from], xx[to], yy[to], window=vertices$window,
check=FALSE)
# tolerance
toler <- default.linnet.tolerance(lines)
## pack up
out <- list(vertices=vertices, m=m, lines=lines, from=from, to=to,
sparse=sparse, window=vertices$window,
toler=toler)
class(out) <- c("linnet", class(out))
## finish ?
if(sparse)
return(out)
# compute matrix of distances between adjacent vertices
n <- nrow(m)
d <- matrix(Inf, n, n)
diag(d) <- 0
d[m] <- pairdist(vertices)[m]
## now compute shortest-path distances between each pair of vertices
out$dpath <- dpath <- dist2dpath(d)
if(warn && any(is.infinite(dpath)))
warning("Network is not connected", call.=FALSE)
# pre-compute bounding radius
out$boundingradius <- boundingradius(out)
return(out)
}
marks.linnet <- function(x, of=c("segments", "vertices"), ...) {
of <- match.arg(of)
m <- switch(of,
vertices = marks(x$vertices, ...),
segments = marks(x$lines, ...))
return(m)
}
"marks<-.linnet" <- function(x, of=c("segments", "vertices"), ..., value) {
of <- match.arg(of)
switch(of,
vertices = {
marks(x$vertices, ...) <- value
},
segments = {
marks(x$lines, ...) <- value
})
return(x)
}
print.linnet <- function(x, ...) {
nv <- x$vertices$n
nl <- x$lines$n
splat("Linear network with",
nv, ngettext(nv, "vertex", "vertices"),
"and",
nl, ngettext(nl, "line", "lines"))
if(!is.null(br <- x$boundingradius) && is.infinite(br))
splat("[Network is not connected]")
if(!is.null(x$vertices$marks)) splat("Vertices are marked")
if(!is.null(x$lines$marks)) splat("Line segments are marked")
print(as.owin(x), prefix="Enclosing window: ")
return(invisible(NULL))
}
summary.linnet <- function(object, ...) {
deg <- vertexdegree(object)
sparse <- object$sparse %orifnull% is.null(object$dpath)
result <- list(nvert = object$vertices$n,
nline = object$lines$n,
nedge = sum(deg)/2,
vertmarks = !is.null(object$vertices$marks),
segmarks = !is.null(object$lines$marks),
unitinfo = summary(unitname(object)),
totlength = sum(lengths_psp(object$lines)),
maxdegree = max(deg),
ncomponents = length(levels(connected(object, what="labels"))),
win = as.owin(object),
sparse = sparse)
if(!sparse) {
result$diam <- diameter(object)
result$boundrad <- boundingradius(object)
}
result$toler <- object$toler
class(result) <- c("summary.linnet", class(result))
result
}
print.summary.linnet <- function(x, ...) {
dig <- getOption('digits')
with(x, {
splat("Linear network with",
nvert, ngettext(nvert, "vertex", "vertices"),
"and",
nline, ngettext(nline, "line", "lines"))
if(vertmarks) splat("Vertices are marked")
if(segmarks) splat("Line segments are marked")
splat("Total length", signif(totlength, dig),
unitinfo$plural, unitinfo$explain)
splat("Maximum vertex degree:", maxdegree)
if(sparse) splat("[Sparse matrix representation]") else
splat("[Non-sparse matrix representation]")
if(ncomponents > 1) {
splat("Network is disconnected: ", ncomponents, "connected components")
} else {
splat("Network is connected")
if(!sparse) {
splat("Diameter:", signif(diam, dig), unitinfo$plural)
splat("Bounding radius:", signif(boundrad, dig), unitinfo$plural)
}
}
if(!is.null(x$toler))
splat("Numerical tolerance:", signif(x$toler, dig), unitinfo$plural)
print(win, prefix="Enclosing window: ")
})
return(invisible(NULL))
}
plot.linnet <- function(x, ..., main=NULL, add=FALSE,
do.plot=TRUE,
show.vertices=FALSE, show.window=FALSE,
args.vertices=list(), args.segments=list()) {
if(is.null(main))
main <- short.deparse(substitute(x))
stopifnot(inherits(x, "linnet"))
argh <- list(...)
lines <- as.psp(x)
if(show.vertices) vert <- vertices(x)
#' plan layout and save symbolmaps
RS <- do.call(plot,
resolve.defaults(list(x=quote(lines),
do.plot=FALSE,
show.window=show.window,
main=main,
multiplot=FALSE),
args.segments,
list(...),
list(use.marks=FALSE, legend=FALSE)))
B <- as.owin(RS)
if(show.vertices) {
RV <- do.call(plot,
resolve.defaults(list(x=quote(vert),
do.plot=FALSE),
args.vertices,
list(...),
list(use.marks=FALSE, legend=FALSE)))
BV <- as.owin(RV)
B <- boundingbox(B, BV)
} else {
RV <- NULL
}
## initialise plot
if(!add) {
args.main <- argh[names(argh) %in% c("cex.main", "adj.main", "col")]
do.call(plot, append(list(x=quote(B), type="n", main=main),
args.main))
}
## plot segments and (optionally) vertices
do.call(plot,
resolve.defaults(list(x=quote(lines),
add=TRUE,
show.window=show.window,
show.all=TRUE,
main="",
multiplot=FALSE),
args.segments,
list(...),
list(use.marks=FALSE, legend=FALSE)))
if(show.vertices) {
do.call(plot,
resolve.defaults(list(x=quote(vert),
add=TRUE,
show.window=FALSE,
show.all=TRUE,
main=""),
args.vertices,
list(...),
list(use.marks=FALSE, legend=FALSE)))
}
result <- list(segments=RS, vertices=RV)
attr(result, "bbox") <- B
return(invisible(result))
}
as.psp.linnet <- function(x, ..., fatal=TRUE) {
verifyclass(x, "linnet", fatal=fatal)
return(x$lines)
}
vertices.linnet <- function(w) {
verifyclass(w, "linnet")
return(w$vertices)
}
nvertices.linnet <- function(x, ...) {
verifyclass(x, "linnet")
return(x$vertices$n)
}
nsegments.linnet <- function(x) {
return(x$lines$n)
}
Window.linnet <- function(X, ...) {
return(X$window)
}
"Window<-.linnet" <- function(X, ..., check=TRUE, value) {
if(check) {
X <- X[value]
} else {
X$window <- value
X$lines$window <- value
X$vertices$window <- value
}
return(X)
}
as.owin.linnet <- function(W, ...) {
return(Window(W))
}
as.linnet <- function(X, ...) {
UseMethod("as.linnet")
}
as.linnet.linnet <- function(X, ..., sparse, maxsize=30000) {
if(missing(sparse)) return(X)
if(is.null(X$sparse)) X$sparse <- is.null(X$dpath)
if(sparse && !(X$sparse)) {
# delete distance matrix
X$dpath <- NULL
# convert adjacency matrix to sparse matrix
X$m <- as(X$m, "sparseMatrix")
X$sparse <- TRUE
} else if(!sparse && X$sparse) {
# convert adjacency matrix to path-distance matrix
nv <- nvertices(X)
if(nv > maxsize) {
stop(paste("Unable to create a matrix of size", nv, "x", nv,
paren(paste("max permitted size", maxsize, "x", maxsize))),
call.=FALSE)
}
X$m <- m <- as.matrix(X$m)
edges <- which(m, arr.ind=TRUE)
from <- edges[,1L]
to <- edges[,2L]
# compute distances to one-step neighbours
n <- nrow(m)
d <- matrix(Inf, n, n)
diag(d) <- 0
coo <- coords(vertices(X))
d[edges] <- sqrt(rowSums((coo[from, 1:2] - coo[to, 1:2])^2))
# compute shortest path distance matrix
X$dpath <- dist2dpath(d)
# compute bounding radius
X$boundingradius <- boundingradius(X)
X$sparse <- FALSE
} else if(!sparse) {
# possibly update internals
X$boundingradius <- boundingradius(X)
}
# possibly update internals
X$circumradius <- NULL
X$toler <- default.linnet.tolerance(X)
return(X)
}
as.linnet.psp <- function(X, ..., eps, sparse=FALSE) {
X <- selfcut.psp(X)
camefrom <- attr(X, "camefrom")
V <- unique(endpoints.psp(X))
if(missing(eps) || is.null(eps)) {
eps <- sqrt(.Machine$double.eps) * diameter(Frame(X))
} else {
check.1.real(eps)
stopifnot(eps >= 0)
}
if(eps > 0 && minnndist(V) <= eps) {
gV <- marks(connected(V, eps))
xx <- as.numeric(by(V$x, gV, mean))
yy <- as.numeric(by(V$y, gV, mean))
V <- ppp(xx, yy, window=Window(X))
}
first <- endpoints.psp(X, "first")
second <- endpoints.psp(X, "second")
from <- nncross(first, V, what="which")
to <- nncross(second, V, what="which")
if(any(reverse <- (from > to))) {
newfrom <- ifelse(reverse, to, from)
newto <- ifelse(reverse, from, to)
from <- newfrom
to <- newto
}
fromto <- cbind(from, to)
nontrivial <- (from != to) & !duplicated(fromto)
join <- fromto[nontrivial, , drop=FALSE]
result <- linnet(V, edges=join, sparse=sparse)
if(is.marked(X)) marks(result$lines) <- marks(X[nontrivial])
attr(result, "camefrom") <- camefrom[nontrivial]
return(result)
}
unitname.linnet <- function(x) {
unitname(x$window)
}
"unitname<-.linnet" <- function(x, value) {
w <- x$window
v <- x$vertices
l <- x$lines
unitname(w) <- unitname(v) <- unitname(l) <- value
x$window <- w
x$vertices <- v
x$lines <- l
return(x)
}
diameter.linnet <- function(x) {
stopifnot(inherits(x, "linnet"))
dpath <- x$dpath
if(is.null(dpath)) return(NULL) else return(max(0, dpath))
}
volume.linnet <- function(x) {
sum(lengths_psp(x$lines))
}
vertexdegree <- function(x) {
verifyclass(x, "linnet")
return(rowSums(x$m))
}
circumradius.linnet <- function(x, ...) {
.Deprecated("boundingradius.linnet")
boundingradius.linnet(x, ...)
}
boundingradius.linnet <- function(x, ...) {
stopifnot(inherits(x, "linnet"))
cr <- x$boundingradius %orifnull% x$circumradius
if(!is.null(cr))
return(cr)
dpath <- x$dpath
if(is.null(dpath)) return(NULL)
if(any(is.infinite(dpath))) return(Inf)
if(nrow(dpath) <= 1)
return(max(0,dpath))
from <- x$from
to <- x$to
lines <- x$lines
nseg <- lines$n
leng <- lengths_psp(lines)
if(spatstat.options("Clinearradius")) {
fromC <- from - 1L
toC <- to - 1L
nv <- npoints(vertices(x))
huge <- sum(leng)
z <- .C(SL_linearradius,
ns = as.integer(nseg),
from = as.integer(fromC),
to = as.integer(toC),
lengths = as.double(leng),
nv = as.integer(nv),
dpath = as.double(dpath),
huge = as.double(huge),
result = as.double(numeric(1)),
PACKAGE="spatstat.linnet")
return(z$result)
}
sA <- sB <- matrix(Inf, nseg, nseg)
for(i in 1:nseg) {
# endpoints of segment i
A <- from[i]
B <- to[i]
AB <- leng[i]
sA[i,i] <- sB[i,i] <- AB/2
for(j in (1:nseg)[-i]) {
# endpoints of segment j
C <- from[j]
D <- to[j]
CD <- leng[j]
AC <- dpath[A,C]
AD <- dpath[A,D]
BC <- dpath[B,C]
BD <- dpath[B,D]
# max dist from A to any point in segment j
sA[i,j] <- if(AD > AC + CD) AC + CD else
if(AC > AD + CD) AD + CD else
(AC + AD + CD)/2
# max dist from B to any point in segment j
sB[i,j] <- if(BD > BC + CD) BC + CD else
if(BC > BD + CD) BD + CD else
(BC + BD + CD)/2
}
}
# max dist from each A to any point in another segment
mA <- apply(sA, 1, max)
# max dist from each B to any point in another segment
mB <- apply(sB, 1, max)
# min of these
min(mA, mB)
}
####################################################
# affine transformations
####################################################
scalardilate.linnet <- function(X, f, ...) {
trap.extra.arguments(..., .Context="In scalardilate(X,f)")
check.1.real(f, "In scalardilate(X,f)")
stopifnot(is.finite(f) && f > 0)
Y <- X
Y$vertices <- scalardilate(X$vertices, f=f)
Y$lines <- scalardilate(X$lines, f=f)
Y$window <- scalardilate(X$window, f=f)
if(!is.null(X$dpath)) {
Y$dpath <- f * X$dpath
Y$boundingradius <- f * (X$boundingradius %orifnull% X$circumradius)
Y$circumradius <- NULL
}
if(!is.null(X$toler))
X$toler <- makeLinnetTolerance(f * X$toler)
return(Y)
}
affine.linnet <- function(X, mat=diag(c(1,1)), vec=c(0,0), ...) {
verifyclass(X, "linnet")
if(length(unique(eigen(mat)$values)) == 1) {
# transformation is an isometry
scal <- sqrt(abs(det(mat)))
Y <- X
Y$vertices <- affine(X$vertices, mat=mat, vec=vec, ...)
Y$lines <- affine(X$lines, mat=mat, vec=vec, ...)
Y$window <- affine(X$window, mat=mat, vec=vec, ...)
if(!is.null(X$dpath)) {
Y$dpath <- scal * X$dpath
Y$boundingradius <- scal * (X$boundingradius %orifnull% X$circumradius)
X$circumradius <- NULL
}
if(!is.null(Y$toler))
Y$toler <- makeLinnetTolerance(scal * Y$toler)
} else {
# general case
vertices <- affine(X$vertices, mat=mat, vec=vec, ...)
Y <- linnet(vertices, edges=cbind(X$from, X$to))
}
return(Y)
}
shift.linnet <- function(X, vec=c(0,0), ..., origin=NULL) {
verifyclass(X, "linnet")
Y <- X
if(!is.null(origin)) {
if(!missing(vec))
warning("argument vec ignored; argument origin has precedence")
locn <- interpretAsOrigin(origin, Window(X))
vec <- -locn
}
Y$window <- W <- shift(X$window, vec=vec, ...)
v <- getlastshift(W)
Y$vertices <- shift(X$vertices, vec=v, ...)
Y$lines <- shift(X$lines, vec=v, ...)
# tack on shift vector
attr(Y, "lastshift") <- v
return(Y)
}
rotate.linnet <- function(X, angle=pi/2, ..., centre=NULL) {
verifyclass(X, "linnet")
if(!is.null(centre)) {
X <- shift(X, origin=centre)
negorigin <- getlastshift(X)
} else negorigin <- NULL
Y <- X
Y$vertices <- rotate(X$vertices, angle=angle, ...)
Y$lines <- rotate(X$lines, angle=angle, ...)
Y$window <- rotate(X$window, angle=angle, ...)
if(!is.null(negorigin))
Y <- shift(Y, -negorigin)
return(Y)
}
rescale.linnet <- function(X, s, unitname) {
if(missing(unitname)) unitname <- NULL
if(missing(s) || is.null(s)) s <- 1/unitname(X)$multiplier
Y <- scalardilate(X, f=1/s)
unitname(Y) <- rescale(unitname(X), s, unitname)
return(Y)
}
"[.linnet" <- function(x, i, ..., snip=TRUE) {
if(!is.owin(i))
stop("In [.linnet: the index i should be a window", call.=FALSE)
x <- repairNetwork(x)
w <- i
wp <- as.polygonal(w)
if(is.mask(w)) {
## protect against pixellation artefacts
pixel <- owinInternalRect(w$xstep * c(-1,1)/2, w$ystep * c(-1,1)/2)
wp <- MinkowskiSum(wp, pixel)
wp <- intersect.owin(wp, Frame(w))
}
## Find vertices that lie inside window
vertinside <- inside.owin(x$vertices, w=wp)
from <- x$from
to <- x$to
if(snip) {
if(!is.null(marks(vertices(x)))) {
warning(paste("Marks attached to the network vertices were removed,",
"because no mark information is available",
"for the new vertices created by [.linnet when snip=TRUE"),
call.=FALSE)
marks(x$vertices) <- NULL
}
## For efficiency, first restrict network to relevant segments.
## Find segments EITHER OF whose endpoints lie in 'w' ...
okedge <- vertinside[from] | vertinside[to]
## ... or which cross the boundary of 'w'
xlines <- as.psp(x)
wlines <- edges(wp)
if(any(miss <- !okedge)) {
hits <- apply(test.crossing.psp(xlines[miss], wlines), 1, any)
okedge[miss] <- hits
}
## extract relevant subset of network graph
x <- thinNetwork(x, retainedges=okedge)
## Now add vertices at crossing points with boundary of 'w'
b <- unique(crossing.psp(xlines, wlines))
novel <- (nncross(b, x$vertices, what="dist") > 0)
x <- insertVertices(x, b[novel])
boundarypoints <- attr(x, "id")
## update data
from <- x$from
to <- x$to
vertinside <- inside.owin(x$vertices, w=wp)
vertinside[boundarypoints] <- TRUE
}
## find segments whose endpoints BOTH lie in 'w'
edgeinside <- vertinside[from] & vertinside[to]
## .. and which are not trivial
umap <- uniquemap(x$vertices)
nontrivial <- (umap[from] != umap[to])
## extract relevant subset of network
xnew <- thinNetwork(x, retainedges=edgeinside & nontrivial)
## adjust window efficiently
Window(xnew, check=FALSE) <- w
return(xnew)
}
pixellate.linnet <- function(x, ...) {
pixellate(as.psp(x), ...)
}
connected.linnet <- function(X, ..., what=c("labels", "components")) {
verifyclass(X, "linnet")
what <- match.arg(what)
nv <- npoints(vertices(X))
lab0 <- cocoEngine(nv, X$from - 1L, X$to - 1L, "connected.linnet")
lab <- lab0 + 1L
lab <- factor(as.integer(factor(lab)))
if(what == "labels")
return(lab)
nets <- list()
subsets <- split(seq_len(nv), lab)
for(i in seq_along(subsets))
nets[[i]] <- thinNetwork(X, retainvertices=subsets[[i]])
return(nets)
}
is.connected.linnet <- function(X, ...) {
if(!is.null(dpath <- X$dpath))
return(all(is.finite(dpath)))
lab <- connected(X, what="labels")
npieces <- length(levels(lab))
return(npieces == 1)
}
crossing.linnet <- function(X, Y) {
X <- as.linnet(X)
if(!inherits(Y, c("linnet", "infline", "psp")))
stop("L should be an object of class psp, linnet or infline", call.=FALSE)
## convert infinite lines to segments
if(inherits(Y, "linnet")) Y <- as.psp(Y)
if(inherits(Y, "infline")) {
Y <- clip.infline(Y, Frame(X))
id <- marks(Y)
lev <- levels(id)
} else {
id <- lev <- seq_len(nsegments(Y))
}
## extract segments of network
S <- as.psp(X)
## find crossing points
SY <- crossing.psp(S, Y, fatal=FALSE, details=TRUE)
if(is.null(SY) || npoints(SY) == 0)
return(lpp(L=X))
SY <- as.data.frame(SY)
Z <- with(as.data.frame(SY),
as.lpp(x=x, y=y, seg=iA, tp=tA, L=X,
marks=factor(id[as.integer(jB)], levels=lev)))
return(Z)
}
density.linnet <- function(x, ...) {
density.psp(as.psp(x), ...)
}
terminalvertices <- function(L) {
## identify terminal vertices and return them as an lpp object
verifyclass(L, "linnet")
ind <- which(vertexdegree(L) == 1)
nV <- length(ind)
if(nV == 0) {
## return empty pattern
return(lpp(L=L))
}
V <- vertices(L)[ind]
## construct network coordinates
seg <- rep(NA_integer_, nV)
tp <- rep(NA_real_, nV)
## look for vertices mentioned as the start of a segment
left <- match(ind, L$from)
found <- !is.na(left)
seg[found] <- left[found]
tp[found] <- 0
## look for vertices mentioned as the end of a segment
right <- match(ind, L$to)
found <- !is.na(right)
seg[found] <- right[found]
tp[found] <- 1
## pack up
df <- cbind(coords(V), data.frame(seg=seg, tp=tp))
B <- lpp(df, L)
return(B)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.