aiPlot: Plot Absolute Information of Estimators

View source: R/aiPlotRmx.R

aiPlotR Documentation

Plot Absolute Information of Estimators

Description

The function aiPlot plots the absolute information (AI) of estimators.

Usage

aiPlot(x, ...)

## S3 method for class 'rmx'
aiPlot(x, range.alpha = 1e-6, range.n = 501, 
        param.digits = 2, ggplot.xlab = "x", 
        ggplot.ylab = expression(paste(abs(IF(x))^2)),
        ggplot.ggtitle = NULL,
        point.col = "#0072B5", point.alpha = 0.4, ...)

Arguments

x

object of S3 class rmx.

range.alpha

alpha-quantile used to compute plot range, which is from range.alpha-quantile to 1-range.alpha-quantile of the fitted model.

range.n

number of points in the alpha-quantile range, generated by function seq.

param.digits

number of digits used for the estimated parameter values, if default ggplot.ggtitle is used.

ggplot.xlab

label(s) of x-axis, recycled if length is equal to 1 and more than 1 parameter has been estimated.

ggplot.ylab

label(s) of y-axis, recycled if length is equal to 1 and more than 1 parameter has been estimated.

ggplot.ggtitle

if NULL a default plot title is. If it is specified, it should have length 1.

point.col

single color used for colouring the data points.

point.alpha

alpha used for color shading.

...

further arguments passed through.

Details

The function is inspired by the plot-methods and function PlotIC of the RobASt-family of packages.

In case of optimally-robust RMX estimators computed with function rmx (S3 class rmx), the absolute information is plotted which corresponds to the squared length of the influence function; see Kohl (2005).

Value

Object of class ggplot.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing the Radius. Statistical Methods and Applications 17(1) 13-40. Extended version: http://r-kurs.de/RRlong.pdf

M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in General Smoothly Parametrized Models. Statistical Methods and Application, 19(3):333-354.

See Also

rmx, optIF

Examples

ind <- rbinom(100, size=1, prob=0.05) 
x <- rnorm(100, mean=ind*3, sd=(1-ind) + ind*9)
res <- rmx(x, eps.lower = 0.01, eps.upper = 0.1)
aiPlot(res)

## plot-method
plot(res, which = 5)

## setting and passing argument
aiPlot(res, ggplot.xlab = "data", ggplot.ylab = "absolute information")
plot(res, which = 5, 
     control = list(aiPlot = list(ggplot.xlab = "data", 
                                  ggplot.ylab = "influence")))

stamats/rmx documentation built on Sept. 29, 2023, 7:13 p.m.