optIF.norm | R Documentation |
The function computes the optimally robust IF for normal location (mean)
and scale (sd). The function is rarely called directly, but via function
optIF
and is mainly for internal use.
optIF.norm(radius, mean = 0, sd = 1, A.loc.start = 1, A.sc.start = 0.5,
a.sc.start = 0, bUp = 1000, delta = 1e-6, itmax = 100L)
radius |
non-negative real: neighborhood radius. |
mean |
mean parameter; see |
sd |
sd parameter; see |
A.loc.start |
numeric: initial value for location component of standardising matrix A. |
A.sc.start |
numeric: initial value for scale component of standardising matrix A. |
a.sc.start |
numeric: initial value for scale component of centering vector a. |
bUp |
postive real: upper limit for clipping constant b. |
delta |
positive real: desired accuracy (convergence tolerance). |
itmax |
positive ingeger: maximum number of iterations. |
The Lagrange multipliers contained in the expression of the optimally robust IF are computed; i.e., clipping constant, centering vector and standardising matrix; see Chapter 8 of Kohl (2005).
An object of class "optIF"
is returned. It contains the
following arguments:
model |
short name of the model / distribution |
modelName |
full name of the model |
parameter |
parameter values of the model |
A |
standardizing matrix |
a |
centering vector |
b |
clipping constant |
IFun |
influence function |
range |
function to generate grid for evaluating |
asMSE |
maximum asymptotic mean squared error (MSE) |
asVar |
asymptotic (co)variance |
asBias |
maximum asymptotic bias |
radius |
neighborhood radius |
Matthias Kohl Matthias.Kohl@stamats.de
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
optIF
## IF of ML estimator
optIF.norm(radius = 0)
## IF of MB estimator
optIF.norm(radius = Inf)
## IF of optimally robust AL estimator
optIF.norm(radius = 0.5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.