cniper | R Documentation |
The function cniper
computes cniper regions by comparing the
maximum asymptotic MSE of ML and RMX estimators under contaminations by
Dirac point measures.
cniper(x, ...)
## S3 method for class 'rmx'
cniper(x, range.alpha = 1e-6, ...)
## S3 method for class 'cniper'
print(x, digits = 3, ...)
## S3 method for class 'cniper'
plot(x, add.data = TRUE, color.data = "#0072B5",
alpha.data = 0.4, range.alpha = 1e-6, range.n = 501,
color.vline = "#E18727",
ggplot.ggtitle = "Cniper Contamination",
ggplot.xlab = "contamination point",
ggplot.ylab = "asMSE(ML) - asMSE(RMX)", ...)
x |
object of S3 class |
range.alpha |
alpha-quantile used to determine the search region for cniper points. |
digits |
minimal number of significant digits. |
add.data |
logical: add data points to the plot. |
color.data |
character: color used for plotting the data points. |
alpha.data |
numeric: amount of alpha shading used for plotting the data points. |
range.n |
numeric: number of points used for plotting the curve of the MSE differences. |
color.vline |
character: color used for plotting the boundaries of the cniper region. |
ggplot.ggtitle |
character: title of the plot. |
ggplot.xlab |
character: label of x-axis. |
ggplot.ylab |
character: label of y-axis. |
... |
further arguments passed through. |
The function is inspired by the respective functions of the RobASt-family of packages.
In case of optimally-robust RMX estimators computed with function rmx
(S3 class rmx
), cniper regions are computed by comparing the
maximum asymptotic MSE of the RMX estimator with the maximum asyptotic MSE
of the ML estimator. For more details about the cniper concept we refer
to the Introduction of Kohl (2005) and Section 5 of Ruckdeschel (2010).
An object of class "cniper"
is returned. It contails at least the
following arguments:
rmx |
object of class |
lower |
lower boundary of cniper region. |
upper |
upper boundary of cniper region. |
prop.cniper |
proportion of data in the cniper region. |
p.cniper |
probability of the cniper region under the fitted model. |
prop.lower |
proportion of data in the lower cniper region. |
prop.upper |
proportion of data in the upper cniper region. |
p.lower |
probability of the lower cniper region under the fitted model. |
p.upper |
probability of the upper cniper region under the fitted model. |
Matthias Kohl Matthias.Kohl@stamats.de
Kohl, M. (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in General Smoothly Parametrized Models. Statistical Methods and Application, 19(3):333-354.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing the Radius. Statistical Methods and Applications 17(1) 13-40. Extended version: http://r-kurs.de/RRlong.pdf.
Ruckdeschel, P. (2010). Consequences of Higher Order Asymptotics for the MSE of M-estimators on Neighborhoods. arXiv, https://arxiv.org/abs/1006.0123.
rmx
, getCnipers
, outlier
ind <- rbinom(100, size=1, prob=0.05)
x <- rnorm(100, mean=ind*3, sd=(1-ind) + ind*9)
res <- rmx(x, eps.lower = 0.01, eps.upper = 0.1)
(cni.res <- cniper(res))
plot(cni.res)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.