cniper: Cniper Region

View source: R/cniper.R

cniperR Documentation

Cniper Region

Description

The function cniper computes cniper regions by comparing the maximum asymptotic MSE of ML and RMX estimators under contaminations by Dirac point measures.

Usage

cniper(x, ...)

## S3 method for class 'rmx'
cniper(x, range.alpha = 1e-6, ...)

## S3 method for class 'cniper'
print(x, digits = 3, ...)

## S3 method for class 'cniper'
plot(x, add.data = TRUE, color.data = "#0072B5",
                      alpha.data = 0.4, range.alpha = 1e-6, range.n = 501, 
                      color.vline = "#E18727", 
                      ggplot.ggtitle = "Cniper Contamination", 
                      ggplot.xlab = "contamination point", 
                      ggplot.ylab = "asMSE(ML) - asMSE(RMX)", ...)

Arguments

x

object of S3 class rmx.

range.alpha

alpha-quantile used to determine the search region for cniper points.

digits

minimal number of significant digits.

add.data

logical: add data points to the plot.

color.data

character: color used for plotting the data points.

alpha.data

numeric: amount of alpha shading used for plotting the data points.

range.n

numeric: number of points used for plotting the curve of the MSE differences.

color.vline

character: color used for plotting the boundaries of the cniper region.

ggplot.ggtitle

character: title of the plot.

ggplot.xlab

character: label of x-axis.

ggplot.ylab

character: label of y-axis.

...

further arguments passed through.

Details

The function is inspired by the respective functions of the RobASt-family of packages.

In case of optimally-robust RMX estimators computed with function rmx (S3 class rmx), cniper regions are computed by comparing the maximum asymptotic MSE of the RMX estimator with the maximum asyptotic MSE of the ML estimator. For more details about the cniper concept we refer to the Introduction of Kohl (2005) and Section 5 of Ruckdeschel (2010).

Value

An object of class "cniper" is returned. It contails at least the following arguments:

rmx

object of class rmx.

lower

lower boundary of cniper region.

upper

upper boundary of cniper region.

prop.cniper

proportion of data in the cniper region.

p.cniper

probability of the cniper region under the fitted model.

prop.lower

proportion of data in the lower cniper region.

prop.upper

proportion of data in the upper cniper region.

p.lower

probability of the lower cniper region under the fitted model.

p.upper

probability of the upper cniper region under the fitted model.

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

Kohl, M. (2005). Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.

M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in General Smoothly Parametrized Models. Statistical Methods and Application, 19(3):333-354.

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing the Radius. Statistical Methods and Applications 17(1) 13-40. Extended version: http://r-kurs.de/RRlong.pdf.

Ruckdeschel, P. (2010). Consequences of Higher Order Asymptotics for the MSE of M-estimators on Neighborhoods. arXiv, https://arxiv.org/abs/1006.0123.

See Also

rmx, getCnipers, outlier

Examples

ind <- rbinom(100, size=1, prob=0.05) 
x <- rnorm(100, mean=ind*3, sd=(1-ind) + ind*9)
res <- rmx(x, eps.lower = 0.01, eps.upper = 0.1)
(cni.res <- cniper(res))
plot(cni.res)

stamats/rmx documentation built on Sept. 29, 2023, 7:13 p.m.