riPlot | R Documentation |
The function riPlot
plots the relative information (RI) of estimators.
It is only usefull and implemented for models where at least two parameters
have to be estimated.
riPlot(x, ...)
## S3 method for class 'rmx'
riPlot(x, range.alpha = 1e-6, range.n = 501,
info.digits = 2, param.digits = 2,
ggplot.xlab = "x", ggplot.ylab = NULL,
ggplot.ggtitle = NULL,
point.col = "#0072B5", point.alpha = 0.4,
point.length.out = 5, point.range = c(1,7),
plot = TRUE, ...)
x |
object of S3 class |
range.alpha |
alpha-quantile used to compute plot range, which is from
|
range.n |
number of points in the alpha-quantile range, generated by
function |
info.digits |
number of digits shown for |
param.digits |
number of digits used for the estimated parameter values, if
default |
ggplot.xlab |
labels of x-axes, recycled if length is equal to 1. |
ggplot.ylab |
if |
ggplot.ggtitle |
if |
point.col |
single color used for colouring the data points. |
point.alpha |
alpha used for color shading. |
point.length.out |
number of point sizes used to visualize the absolut/total
information assigned to a data point; see argument
|
point.range |
a numeric vector of length 2 specifing the minimum and maximum
size of the data points; see argument
|
plot |
if |
... |
further arguments passed through. |
The function is inspired by the plot
-methods and function PlotIC
of the RobASt-family of packages.
In case of optimally-robust RMX estimators computed with function rmx
(S3 class rmx
), the relative information is plotted which corresponds
to the absolute value of the the respective component/coordinate of the
influence function devided the absolute information. The size of the data
points represents the absolute information.
Invisible object of class ggplot
or a list of ggplot
objects.
Matthias Kohl Matthias.Kohl@stamats.de
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing the Radius. Statistical Methods and Applications 17(1) 13-40. Extended version: http://r-kurs.de/RRlong.pdf
M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in General Smoothly Parametrized Models. Statistical Methods and Application, 19(3):333-354.
rmx
, optIF
ind <- rbinom(100, size=1, prob=0.05)
x <- rnorm(100, mean=ind*3, sd=(1-ind) + ind*9)
res <- rmx(x, eps.lower = 0.01, eps.upper = 0.1)
riPlot(res)
## plot-method
plot(res, which = 6)
## setting and passing argument
riPlot(res, ggplot.xlab = "data", ggplot.ylab = "relative information",
ggplot.ggtitle = c("Rel. information of location part",
"Rel. information of scale part"))
plot(res, which = 6,
control = list(riPlot = list(ggplot.xlab = "data",
ggplot.ylab = "relative information",
ggplot.ggtitle = c("Rel. information of location part",
"Rel. information of scale part"))))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.