dPlot | R Documentation |
The function dPlot
generates a density plot for fitted models.
dPlot(x, ...)
## S3 method for class 'rmx'
dPlot(x, param.digits = 3, ggplot.xlab = "x",
ggplot.ylab = NULL, ggplot.ggtitle = NULL,
density.col = "#0072B5", density.lwd = 1,
density.n = 501, ...)
x |
object of S3 class |
param.digits |
number of digits used for the estimated parameter values, if
default |
ggplot.xlab |
label of x-axis. |
ggplot.ylab |
label of y-axis. |
ggplot.ggtitle |
plot title. If |
density.col |
single color used for colouring the empirical density. |
density.lwd |
line width for empirical density and density of the estimated model. |
density.n |
number of points to interpolate the density of the estimated model. |
... |
further arguments passed through. |
The function is based on functions provided by package ggplot2.
Invisible object of class ggplot
.
Matthias Kohl Matthias.Kohl@stamats.de
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Rieder, H., Kohl, M. and Ruckdeschel, P. (2008) The Costs of not Knowing the Radius. Statistical Methods and Applications 17(1) 13-40. Extended version: http://r-kurs.de/RRlong.pdf
M. Kohl, P. Ruckdeschel, and H. Rieder (2010). Infinitesimally Robust Estimation in General Smoothly Parametrized Models. Statistical Methods and Application, 19(3):333-354.
rmx
, optIF
ind <- rbinom(100, size=1, prob=0.05)
x <- rnorm(100, mean=ind*3, sd=(1-ind) + ind*9)
res <- rmx(x, eps.lower = 0.01, eps.upper = 0.1)
dPlot(res)
## plot-method
plot(res, which = 4)
## setting and passing arguments
dPlot(res, ggplot.xlab = "data", density.lwd = 2)
plot(res, which = 4,
control = list(dPlot = list(ggplot.xlab = "data", density.lwd = 2)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.