optIFpois: Computation of Optimally Robust IFs for Poisson Mean

optIF.poisR Documentation

Computation of Optimally Robust IFs for Poisson Mean

Description

The function computes the optimally robust IF for Poisson mean. The function is rarely called directly, but via function optIF and is mainly for internal use.

Usage

optIF.pois(radius, lambda = 1, aUp = 100*lambda, cUp = 1e4, 
           delta = 1e-9)

Arguments

radius

non-negative real: neighborhood radius.

lambda

lambda parameter; see dpois.

aUp

numeric: upper limit for centering constant a.

cUp

postive real: upper limit for clipping constant c.

delta

positive real: desired accuracy (convergence tolerance).

Details

The Lagrange multipliers contained in the expression of the optimally robust IF are computed; i.e., clipping, centering and standardising constant; see Chapter 4 of Kohl (2005).

Value

An object of class "optIF" is returned. It contains the following arguments:

model

short name of the model / distribution

modelName

full name of the model

parameter

parameter values of the model

A

standardizing matrix

a

centering vector

b

clipping constant

IFun

influence function

range

function to generate grid for evaluating IFun

asMSE

maximum asymptotic mean squared error (MSE)

asVar

asymptotic (co)variance

asBias

maximum asymptotic bias

radius

neighborhood radius

Author(s)

Matthias Kohl Matthias.Kohl@stamats.de

References

Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.

Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.

See Also

optIF

Examples

## IF of ML estimator
optIF.pois(radius = 0)
## IF of MB estimator
optIF.pois(radius = Inf)
## IF of optimally robust AL estimator
optIF.pois(radius = 0.5)

stamats/rmx documentation built on Sept. 29, 2023, 7:13 p.m.