optIF | R Documentation |
The function computes the optimally robust IF for AL estimators in case of shrinking contamination neighborhoods / gross error models. The definition of these estimators can be found in Rieder (1994) and Kohl (2005).
optIF(model = "norm", radius = NULL, ...)
## S3 method for class 'optIF'
print(x, digits = getOption("digits"), prefix = " ", ...)
## S3 method for class 'optIF'
summary(object, digits = getOption("digits"), prefix = " ", ...)
## S3 method for class 'optIF'
plot(x, alpha = 1e-6, digits = 2, plot = TRUE, n = 501, ...)
model |
character: short name of the model/distribution (default = |
radius |
non-negative real: neighborhood radius. |
x |
an |
object |
an |
alpha |
alpha-quantile used to compute plot range, which is from
|
digits |
minimal number of significant digits. |
prefix |
string, passed to |
plot |
logical: generate plot, sometimes usefull to suppress plotting
and modify the returned |
n |
number of points to evaluate the IF in case of continuous models. |
... |
further arguments passed through sucha as model parameter(s); see details. |
The Lagrange multipliers contained in the expression of the optimally robust IF are computed; i.e., clipping constant, centering vector and standardising matrix. For more details we refer to Rieder (1994) or Kohl (2005).
As models we have implemented so far:
"norm"
: normal location (mean) and scale (sd); see also
optIF.norm
.
"binom"
: binomial probability (size known); see also
optIF.binom
.
"pois"
: Poisson mean; see also optIF.pois
.
"exp"
: Exponential scale; see also optIF.exp
.
An object of class "optIF"
is returned. It contains at least the
following arguments:
model |
short name of the model / distribution |
modelName |
full name of the model |
parameter |
parameter values of the model |
A |
standardizing matrix |
a |
centering vector |
b |
clipping constant |
IFun |
influence function |
range |
function to generate grid for evaluating |
asMSE |
maximum asymptotic mean squared error (MSE) |
asVar |
asymptotic (co)variance |
asBias |
maximum asymptotic bias |
radius |
neighborhood radius |
call |
matched call |
Matthias Kohl Matthias.Kohl@stamats.de
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
rmx
## normal location and scale
IF1 <- optIF(model = "norm", radius = 0.5, mean = -2, sd = 3)
IF1
summary(IF1)
plot(IF1)
## binomial probability
IF2 <- optIF(model = "binom", radius = 0.5, size = 10)
IF2
summary(IF2)
plot(IF2)
## Poisson mean
IF3 <- optIF(model = "pois", radius = 0.5)
IF3
summary(IF3)
plot(IF3)
## Exponential scale
IF4 <- optIF(model = "exp", radius = 0.5)
IF4
summary(IF4)
plot(IF4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.