optIF.binom | R Documentation |
The function computes the optimally robust IF for binomial probability
(size known!). The function is rarely called directly, but via function
optIF
and is mainly for internal use.
optIF.binom(radius, size = 1, prob = 0.5, aUp = 100*size, cUp = 1e4,
delta = 1e-9)
radius |
non-negative real: neighborhood radius. |
size |
size parameter (known!); see |
prob |
prob parameter; see |
aUp |
numeric: upper limit for centering constant a. |
cUp |
postive real: upper limit for clipping constant c. |
delta |
positive real: desired accuracy (convergence tolerance). |
The Lagrange multipliers contained in the expression of the optimally robust IF are computed; i.e., clipping, centering and standardising constant; see Chapter 3 of Kohl (2005).
An object of class "optIF"
is returned. It contains the
following arguments:
model |
short name of the model / distribution |
modelName |
full name of the model |
parameter |
parameter values of the model |
A |
standardizing matrix |
a |
centering vector |
b |
clipping constant |
IFun |
influence function |
range |
function to generate grid for evaluating |
asMSE |
maximum asymptotic mean squared error (MSE) |
asVar |
asymptotic (co)variance |
asBias |
maximum asymptotic bias |
radius |
neighborhood radius |
Matthias Kohl Matthias.Kohl@stamats.de
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
optIF
## IF of ML estimator
optIF.binom(radius = 0, size = 5)
## IF of MB estimator
optIF.binom(radius = Inf, size = 5)
## IF of optimally robust AL estimator
optIF.binom(radius = 0.5, size = 5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.