R/combine.networks.R

Defines functions subnetwork_templates uncombine_network split.network .pop_vattrv .peek_vattrv .combine_networks.bipartite .combine_networks.unipartite combine_networks

Documented in combine_networks split.network subnetwork_templates uncombine_network

#  File R/combine.networks.R in package ergm.multi, part of the
#  Statnet suite of packages for network analysis, https://statnet.org .
#
#  This software is distributed under the GPL-3 license.  It is free,
#  open source, and has the attribution requirements (GPL Section 7) at
#  https://statnet.org/attribution .
#
#  Copyright 2003-2024 Statnet Commons
################################################################################

#' A single block-diagonal network created by combining multiple networks
#'
#' Given a list of compatible networks, the [combine_networks()] returns a single
#' block-diagonal network, preserving attributes that can be
#' preserved.
#'
#' @param nwl a list of [`network::network`]s to be combined; they
#'   must have similar fundamental properties: directedness and
#'   bipartedness, though their sizes (and the size of each bipartite
#'   group) can vary.
#'
#' @param ignore.nattr,ignore.vattr,ignore.eattr network, vertex, and
#'   edge attributes not to be processed as described below.
#'
#' @param blockID.vattr name of the vertex attribute into which to store
#'   the index of the network to which that vertex originally belonged.
#'
#' @param blockName.vattr if not `NULL`, the name of the vertex
#'   attribute into which to store the name of the network to which
#'   that vertex originally belonged.
#'
#' @param detect.edgecov if `TRUE`, combine network attributes that
#'   look like dyadic covariate ([`ergm::edgecov`][ergm::edgecov-ergmTerm]) matrices into a
#'   block-diagonal matrix.
#'
#' @param keep.unshared.attr whether to keep those network, vertex,
#'   and edge attributes not shared by all networks in the list; if
#'   \code{TRUE}, positions corresponding to networks lacking the
#'   attribute are replaced with \code{NA}, \code{NULL}, or some other
#'   placeholder; incompatible with \code{detect.edgecov==TRUE}.
#'
#' @param subnet.cache whether to save the input network list as an
#'   attribute of the combined network, so that if the network is
#'   resplit using on the same attribute (e.g. using
#'   [uncombine_network()]), an expensive call to [split.network()]
#'   can be avoided, at the cost of storage.
#'
#' @return an object of class `combined_networks` inheriting from
#'   [`network::network`] with a block-diagonal structure (or its
#'   bipartite equivalent) comprising the networks passed in `nwl`. In
#'   particular,
#'
#' * the returned network's size is the sum of the input networks';
#'
#' * its basic properties (directedness and bipartednes) are the same;
#'
#' * the input networks' sociomatrices (both edge presence and edge
#'   attributes) are the blocks in the sociomatrix of the returned
#'   network;
#'
#' * vertex attributes are concatenated;
#'
#' * edge attributes are assigned to their respective edges in
#'   the returned network;
#'
#' * network attributes are stored in a list; but if
#'   `detect.edgecov==TRUE`, those network attributes that have the
#'   same dimension as the sociomatrices of the constituent networks,
#'   they are combined into a single block-diagonal matrix that is
#'   then stored as that attribute.
#'
#' In addition, two new vertex attributes, specified by
#' `blockID.vattr` and (optionally) `blockName.vattr` contain,
#' respectively, the index in `nwl` of the network from which that
#' vertex came and its name, determined as follows:
#'
#' 1. If `nwl` is a named list, names from the list are used.
#'
#' 2. If not 1, but the network has an attribute `title`, it is used.
#'
#' 3. Otherwise, a numerical index is used.
#'
#' If `blockID.vattr` already exists on the constituent networks, the
#' index is *prepended* to the attribute.
#'
#' The values of `blockID.vattr` and `blockName.vattr` are stored in
#' network attributes `".blockID.vattr"` and `".blockName.vattr"`.
#'
#' @aliases combined_networks
#' @examples
#'
#' data(samplk)
#'
#' o1 <- combine_networks(list(samplk1, samplk2, samplk3))
#' image(as.matrix(o1))
#' head(get.vertex.attribute(o1, ".NetworkID"))
#' o2 <- combine_networks(list(o1, o1))
#' image(as.matrix(o2))
#' head(get.vertex.attribute(o2, ".NetworkID", unlist=FALSE))
#'
#' data(florentine)
#' f1 <- combine_networks(list(business=flobusiness, marriage=flomarriage),
#'                        blockName.vattr=".NetworkName")
#' image(as.matrix(f1))
#' head(get.vertex.attribute(f1, ".NetworkID"))
#' head(get.vertex.attribute(f1, ".NetworkName"))
#' @export
combine_networks <- function(nwl, ignore.nattr=c("mnext"), ignore.vattr=c(), ignore.eattr=c(), blockID.vattr=".NetworkID", blockName.vattr=NULL, detect.edgecov=FALSE, keep.unshared.attr=FALSE, subnet.cache=FALSE){
  out <-
    if(any(sapply(nwl, is.bipartite))) .combine_networks.bipartite(nwl=nwl, ignore.nattr=ignore.nattr, ignore.vattr=ignore.vattr, ignore.eattr=ignore.eattr, blockID.vattr=blockID.vattr, blockName.vattr=blockName.vattr, detect.edgecov=detect.edgecov, keep.unshared.attr=keep.unshared.attr)
    else .combine_networks.unipartite(nwl=nwl, ignore.nattr=ignore.nattr, ignore.vattr=ignore.vattr, ignore.eattr=ignore.eattr, blockID.vattr=blockID.vattr, blockName.vattr=blockName.vattr, detect.edgecov=detect.edgecov, keep.unshared.attr=keep.unshared.attr)

  if(subnet.cache){
    snc <- NVL(out %n% ".subnetcache", list()) # TODO: Check that this line is necessary, since combined networks aren't supposed to have a subnet cache even if the constituent networks do.

    nwl0 <- lapply(nwl, `[<-.network`, value = 0)
    snc[[blockID.vattr]] <- nwl0
    out %n% ".subnetcache" <- snc
  }

  out %n% ".blockID.vattr" <- blockID.vattr
  out %n% ".blockName.vattr" <- blockName.vattr

  class(out) <- c("combined_networks", class(out))
  out
}


.combine_networks.unipartite <- function(nwl, ignore.nattr=c("mnext"), ignore.vattr=c(), ignore.eattr=c(), blockID.vattr=".NetworkID", blockName.vattr=NULL, detect.edgecov=FALSE, keep.unshared.attr=FALSE){
  if(any(diff(sapply(nwl, is.directed)))) stop("All networks must have the same directedness.")
  if(keep.unshared.attr && detect.edgecov) stop("Detection of edge covariates is not compatible with retaining unshared attributes.")
  attrset <- if(keep.unshared.attr) union else intersect

  ns <- sapply(nwl, network.size)
  blks <- c(0, cumsum(ns))

  constructor <- if(is(nwl[[1]], "networkLite")) networkLite::networkLite else network.initialize
  out <-  constructor(sum(ns), directed=is.directed(nwl[[1]]))

  # Concatenate network attributes. If you run into what looks like a covariate matrix, combine it correctly.
  sna <- list()
  sna[[blockID.vattr]] <- list()

  for(a in setdiff(Reduce(attrset,lapply(nwl, list.network.attributes)),
                          ignore.nattr)){ # I.e., iterate through common attributes.
    sna[[blockID.vattr]][[a]] <- vl <- lapply(nwl, get.network.attribute, a, unlist=FALSE)

    # Here, try to autodetect covariate matrices and combine them.
    if(detect.edgecov
       && all(sapply(vl, is.matrix))
       && all(sapply(vl, nrow)==ns)
       && all(sapply(vl, ncol)==ns)
       && all_identical(sapply(vl, mode))){

      # A logical vector that extracts off-diagonal element of the ns*ns matrix.


      offdiags <- unlist(lapply(ns, function(n) c(diag(1,n)==0)))
      # It doesn't matter what the "filler" elements are, as long as
      # adding them doesn't add another category and it's not NA. So,
      # what this does is as follows: grab the off-diagonal elements
      # of each covariate matrix, concatenate them into one vector,
      # remove the NAs, and take 0 (if it's present) or the minimum
      # value. (0 as filler can be helpful for sparse matrix
      # representations.)
      dummyvals <- na.omit(unlist(lapply(vl, "c"))[offdiags])
      dummyval <- if(0 %in% dummyvals) 0 else min(dummyvals)
      m <- matrix(dummyval, sum(ns), sum(ns))
      mode(m) <- mode(vl[[1]])

      for(b in seq_along(vl)){
        inds <- blks[b]+seq_len(ns[b])
        m[inds, inds] <- vl[[b]]
      }

      vl <- m
      out <- set.network.attribute(out, a, vl)
    }
  }
  out %n% ".subnetattr" <- sna

  # Concatenate vertex attributes.

  for(a in setdiff(Reduce(attrset,lapply(nwl, list.vertex.attributes)),
                          ignore.vattr)){ # I.e., iterate through common attributes.
    out <- set.vertex.attribute(out, a,
                                do.call(c, lapply(nwl, get.vertex.attribute, a, unlist=FALSE))
                                )
  }

  # Add ties and attributes

  el <- map(seq_along(nwl), function(b) {
    df <- as_tibble(nwl[[b]], attrname = TRUE, unit = "edge", na.rm = FALSE)
    names <- rep(list(as.list(names(df)[-(1:2)])), nrow(df))
    vals <- transpose(df[,-(1:2)])
    list(tails = df[[1]]+blks[b], heads = df[[2]]+blks[b], names = names, vals = vals)
  }) %>% transpose()

  out <- add.edges(out, unlist(el$tails), unlist(el$heads), names.eval=do.call(c, el$names), vals.eval=do.call(c, el$vals))

  # Finally, add a vertex attribute specifying the blocks

  b <- rep(seq_along(ns),ns)
  if(blockID.vattr %in% list.vertex.attributes(out)){ # blockID.vattr already exists
    b <- Map(c, # Concatenate
             b, # each element of b
             get.vertex.attribute(out, blockID.vattr, unlist=FALSE)) # with the corresponding element of out %v% blockID.vattr.
  }
  out <- set.vertex.attribute(out, blockID.vattr, b)

  if(!is.null(blockName.vattr)){
    bn <-
      if(!is.null(names(nwl))) names(nwl)
      else if("title" %in% list.network.attributes(out)) out %v% "title"
      else seq_along(ns)
    b <- rep(bn,ns)
    if(blockName.vattr %in% list.vertex.attributes(out)){ # blockID.vattr already exists
      b <- Map(c, # Concatenate
               b, # each element of b
               get.vertex.attribute(out, blockName.vattr, unlist=FALSE)) # with the corresponding element of out %v% blockID.vattr.
    }
    out <- set.vertex.attribute(out, blockName.vattr, b)
  }

  out
}


.combine_networks.bipartite <- function(nwl, ignore.nattr=c("mnext"), ignore.vattr=c(), ignore.eattr=c(), blockID.vattr=".NetworkID", blockName.vattr=NULL, detect.edgecov=FALSE, keep.unshared.attr=FALSE){
  if(!all(sapply(nwl, is.bipartite))) stop("This function operates only on bipartite networks.")
  if(any(sapply(nwl, is.directed))) stop("Bipartite directed networks are not supported at this time.")
  if(keep.unshared.attr && detect.edgecov) stop("Detection of edge covariates is not compatible with retaining unshared attributes.")
  attrset <- if(keep.unshared.attr) union else intersect

  ns <- sapply(nwl, network.size)
  es <- sapply(nwl, "%n%", "bipartite")
  eblks <- c(0, cumsum(es))
  bip <- eblks[length(eblks)]
  ablks <- cumsum(c(bip, ns-es))

  constructor <- if(is(nwl[[1]], "networkLite")) networkLite::networkLite else network.initialize
  out <-  constructor(sum(ns), directed=is.directed(nwl[[1]]), bipartite=bip)

  # Concatenate network attributes. If you run into what looks like a covariate matrix, combine it correctly.
  sna <- list()
  sna[[blockID.vattr]] <- list()

  for(a in setdiff(Reduce(attrset,lapply(nwl, list.network.attributes)),
                          ignore.nattr)){ # I.e., iterate through common attributes.
    sna[[blockID.vattr]][[a]] <- vl <- lapply(nwl, get.network.attribute, a, unlist=FALSE)

    # Here, try to autodetect covariate matrices and combine them.
    if(detect.edgecov
       && all(sapply(vl, is.matrix))
       && all(sapply(vl, nrow)==es)
       && all(sapply(vl, ncol)==ns-es)
       && all_identical(sapply(vl, mode))){

      # It doesn't matter what the "filler" elements are, as long as
      # adding them doesn't add another category and it's not NA. So,
      # what this does is as follows: grab the elements of each
      # covariate matrix, concatenate them into one vector, remove the
      # NAs, and take 0 (if it's present) or the minimum value. (0 as
      # filler can be helpful for sparse matrix representations.)
      dummyvals <- na.omit(unlist(lapply(vl, "c")))
      dummyval <- if(0 %in% dummyvals) 0 else min(dummyvals)
      m <- matrix(dummyval, sum(es), sum(ns-es))
      mode(m) <- mode(vl[[1]])

      for(b in seq_along(vl)){
        einds <- eblks[b]+seq_len(es[b])
        ainds <- ablks[b]+seq_len(ns[b]-es[b])
        m[einds, ainds-sum(es)] <- vl[[b]]
      }

      vl <- m
      out <- set.network.attribute(out, a, vl)
    }
  }
  out %n% ".subnetattr" <- sna

  # Concatenate vertex attributes.

  for(a in setdiff(Reduce(attrset,lapply(nwl, list.vertex.attributes)),
                   ignore.vattr)){ # I.e., iterate through common attributes.
    vl <- lapply(nwl, get.vertex.attribute, a, unlist=FALSE)
    v <- vector(mode(vl[[1]]), sum(ns))

    for(b in seq_along(vl)){
        einds <- eblks[b]+seq_len(es[b])
        ainds <- ablks[b]+seq_len(ns[b]-es[b])
        v[einds] <- vl[[b]][seq_len(es[b])]
        v[ainds] <- vl[[b]][es[b]+seq_len(ns[b]-es[b])]
    }

    out <- set.vertex.attribute(out, a, v)
  }

  # Add ties and attributes

  el <- map(seq_along(nwl), function(b) {
    df <- as_tibble(nwl[[b]], attrname = TRUE, unit = "edge", na.rm = FALSE)
    names <- rep(list(as.list(names(df)[-(1:2)])), nrow(df))
    vals <- transpose(df[,-(1:2)])
    list(tails = el[[1]]+eblks[b], heads = el[[2]]-es[b]+ablks[b], names = names, vals = vals)
  }) %>% transpose()

  out <- add.edges(out, unlist(el$tails), unlist(el$heads), names.eval=do.call(c, el$names), vals.eval=do.call(c, el$vals))

  # Finally, add a vertex attribute specifying the blocks

  b <- rep(rep(seq_along(ns),2),c(es,ns-es))
  if(blockID.vattr %in% list.vertex.attributes(out)){ # blockID.vattr already exists
    b <- Map(c, # Concatenate
             b, # each element of b
             get.vertex.attribute(out, blockID.vattr, unlist=FALSE)) # with the corresponding element of out %v% blockID.vattr.
  }
  out <- set.vertex.attribute(out, blockID.vattr, b)

  if(!is.null(blockName.vattr)){
    bn <-
      if(!is.null(names(nwl))) names(nwl)
      else if("title" %in% list.network.attributes(out)) out %v% "title"
      else seq_along(ns)
    b <- rep(rep(bn,2),c(es,ns-es))
    if(blockName.vattr %in% list.vertex.attributes(out)){ # blockID.vattr already exists
      b <- Map(c, # Concatenate
               b, # each element of b
               get.vertex.attribute(out, blockName.vattr, unlist=FALSE)) # with the corresponding element of out %v% blockID.vattr.
    }
    out <- set.vertex.attribute(out, blockName.vattr, b)
  }

  out
}


.peek_vattrv <- function(nw, vattr, missing=c("NA","NULL")){
  missing <- match.arg(missing)
  if(missing=="NULL" && ! vattr%in%list.vertex.attributes(nw)) return(NULL)

  av <- get.vertex.attribute(nw, vattr, unlist=FALSE)
  sapply(av, "[", 1)
}

.pop_vattrv <- function(nw, vattr){
  av <- get.vertex.attribute(nw, vattr, unlist=FALSE)
  a <- sapply(av, "[", 1)
  rest <- lapply(av, "[", -1)

  if(all(lengths(rest)==0)) delete.vertex.attribute(nw, vattr)
  else set.vertex.attribute(nw, vattr, rest)

  list(nw = nw, vattr = a)
}


#' A [split()] method for [`network::network`] objects.
#'
#' Split a network into subnetworks on a factor.
#'
#' @param x a [`network::network`] object.
#'
#' @param f,drop,sep,lex.order see [split()]; note that `f` must have length equal to `network.size(x)`.
#'
#' @param ... additional arguments, currently unused.
#'
#' @return A [`network.list`] containing the networks. These networks
#'   will inherit all vertex and edge attributes, as well as relevant
#'   network attributes.
#'
#' @seealso [network::get.inducedSubgraph()]
#' @export
split.network <- function(x, f, drop = FALSE, sep = ".", lex.order = FALSE, ...)
{
  ### NOTE: This is taken from the split.default() implementation, but is trivial.
  if(!missing(...))
    .NotYetUsed(deparse(...), error = FALSE)
  if(is.list(f))
    f <- interaction(f, drop = drop, sep = sep, lex.order = lex.order)
  else if (!is.factor(f))
    f <- as.factor(f)
  else if (drop)
    f <- factor(f)
  ### END Taken from split.default().

  o <- lapply(levels(f), function(l) network::get.inducedSubgraph(x, which(f==l)))
  class(o) <- c("network.list", class(o))
  o
}

#' Split up a network into a list of subgraphs
#'
#' Given a network created by [combine_networks()], [uncombine_network()] returns a list of networks,
#' preserving attributes that can be preserved.
#'
#' @param nw a [`network::network`] created by [combine_networks()].
#'
#' @param split.vattr name of the vertex attribute on which to split,
#'   defaulting to the value of the `".blockID.vattr"` network
#'   attribute.
#'
## #' @param detect.edgecov if `TRUE`, split up network attributes that
## #'   look like dyadic covariate ([`ergm::edgecov`][ergm::edgecov-ergmTerm]) matrices.
#'
#' @param names.vattr optional name of the vertex attribute to use as
#'   network names in the output list, defaulting to the value of the
#'   `".blockName.vattr"` network attribute.
#'
#' @param use.subnet.cache whether to use subnet cache if available;
#'   this is only safe to do if the network is *not* used for its
#'   edges but only for its vertex and network attributes.
#'
#' @return a list of [`network::network`]s containing subgraphs on `split.vattr`. In particular,
#'
#' * their basic properties (directedness and bipartednes) are the same as those of the input network;
#'
#' * vertex attributes are split;
#'
#' * edge attributes are assigned to their respective edges in
#'   the returned networks.
#'
#' If `split.vattr` is a vector, only the first element is used and it's "popped".
#'
#' @seealso [split.network()]
#' @examples
#'
#' data(samplk)
#'
#' o1 <- combine_networks(list(samplk1, samplk2, samplk3))
#' image(as.matrix(o1))
#'
#' ol <- uncombine_network(o1)
#'
#' @export
uncombine_network <- function(nw, split.vattr=nw %n% ".blockID.vattr", names.vattr=nw %n% ".blockName.vattr", use.subnet.cache=FALSE){
  if(!is(nw, "combined_networks")) stop("Specified network was not constructed by ", sQuote("combine_networks()"), ".")

  tmp <- .pop_vattrv(nw, split.vattr); nw <- tmp$nw; f <- tmp$vattr
  if(!is.null(names.vattr)){ tmp <- .pop_vattrv(nw, names.vattr); nw <- tmp$nw; nwnames <- tmp$vattr }

  if(use.subnet.cache && ".subnetcache" %in% list.network.attributes(nw) && names(nw%n%".subnetcache")==split.vattr)
    nwl <- (nw%n%".subnetcache")[[split.vattr]]
  else{
    sna <- (nw %n% ".subnetattr")[[split.vattr]]
    nwl <- split(nw, f)

    for(i in seq_along(nwl)){
      class(nwl[[i]]) <- class(nwl[[i]])[-seq_len(min(which(class(nwl[[i]])=="combined_networks")))]
      for(nattr in c(".subnetattr", ".subnetcache", ".blockID.vattr", ".blockName.vattr"))
        delete.network.attribute(nwl[[i]], nattr)
      for(nattr in names(sna))
        nwl[[i]] %n% nattr <- sna[[nattr]][[i]]
    }
  }

  if(!is.null(names.vattr)) names(nwl) <- unique(nwnames)

  class(nwl) <- c("network.list", class(nwl))
  nwl
}

#' Dynamic registry of functions that combine networks.
#'
#' This is used primarily by developers to provide informative error
#' messages.
#'
#' @param blockID the vertex attribute used as the ID of the block.
#'
#' @param combiner a character vector of length 1 or 2, giving the
#'   top-level (i.e. user-visible) function that combines on it and
#'   optionally what is being combined.
#'
#' @keywords internal
#' @export
ergm.multi_combiner <- local({
  cache <- list()

  function(blockID, combiner=NULL){
    if(missing(blockID)) cache
    else if(is.null(combiner)) cache[[blockID]]
    else cache[[blockID]] <<- c(combiner, tolower(combiner))
  }
})

#' Obtain empty networks representing constituents of a combined network
#'
#' This utility uncombines a [combine_networks()] network using subnetwork cache (which contains only empty networks). It is used primarily by initialisation functions.
#'
#' @param nw,split.vattr,names.vattr see [uncombine_network()].
#'
#' @param copy.ergmlhs a character vector of [`%ergmlhs%`] settings that are to be copied into the constituent networks.
#'
#' @return A list of [`network`]s.
#'
#' @keywords internal
#' @export
subnetwork_templates <- function(nw, split.vattr=nw%n%".blockID.vattr", names.vattr=nw%n%".blockName.vattr", copy.ergmlhs=c("response")){
  if(NVL3(nw.split.vattr<-nw%n%".blockID.vattr", split.vattr != ., FALSE)){
    ergm_Init_stop(
      "The LHS was (at the top level) created by ",
      NVL3(ergm.multi_combiner(nw.split.vattr)[1],
           sQuote(.),
           paste0("an unknown function that uses attribute ", sQuote(nw.split.vattr))),
      " but the term is trying to extract its ",
      NVL3(ergm.multi_combiner(split.vattr)[2],
           paste0(., " (created by ", sQuote(ergm.multi_combiner(split.vattr)[1]), ")."),
           paste0("subgraphs defined by ", split.vattr)),
      " Nesting of terms must match the nesting of constructors; this may change in the future.", immediate.=TRUE)
  }

  uncombine_network(nw, split.vattr=split.vattr, names.vattr=names.vattr, use.subnet.cache=TRUE) %>% map(function(nw1){
    for(name in copy.ergmlhs) nw1%ergmlhs%name <- nw%ergmlhs%name
    nw1})
}

#' Calculate a vector that maps the combined (block-diagonal) LHS network Vertex indices within-layer/within-network Vertex and a Vertex to layer/network lookup table.
#'
#' @param nw combined network.
#' @param by vertex attribute on which to split blocks.
#' @param same_dim whether all blocks must have the same dimensions (usually `FALSE` for multinetwork and `TRUE` for multilayer objects).
#'
#' @return A list with the following elements:
#'
#' \item{nb}{Number of blocks.}
#'
#' \item{bids}{A vector equal in length to the size of the combined
#' network containing the 1-based IDs of the block to which each
#' vertex belongs.}
#'
#' \item{bmap}{A vector equal in length to the size of the combined
#' network containing the 1-based IDs of the each
#' vertex's within-block ID.}
#'
#' @noRd
.block_vertexmap <- function(nw, by=nw %n% ".blockID.vattr", same_dim=FALSE){
  a <- .peek_vattrv(nw, by)
  n <- length(a)
  bip <- nw %n% "bipartite"
  if(NVL(bip,0)){
    ea <- a[seq_len(bip)]
    aa <- a[bip+seq_len(n-bip)]
    el <- rle(ea)$lengths
    al <- rle(aa)$lengths
    if(same_dim) if(!all_identical(el) || !all_identical(al)) stop("Layers must be networks of the same dimensions.", call.=FALSE)

    eoff <- rep(cumsum(c(0,el[-length(el)])), el)
    aoff <- rep(cumsum(c(0,al[-length(al)]))-el, al) + sum(el)

    o <- list(nb = length(el), bids = a, bmap = seq_len(n) - c(eoff,aoff), ns = rbind(el,al))
  }else{
    l <- rle(a)$lengths
    if(same_dim) if(!all_identical(l)) stop("Layers must be networks of the same size.", call.=FALSE)
    off <- rep(cumsum(c(0,l[-length(l)])), l)
    o <- list(nb = length(l), bids = a, bmap = seq_len(n) - off, ns = l)
  }
  o
}
statnet/ergm.multi documentation built on Dec. 4, 2024, 11:24 a.m.