Description Usage Arguments Examples
Fits a generalized linear mixed model with structured (co)variance terms by the following fully modularized steps:
strucParseFormula
parses the mixed model formula with structured terms
mkGeneralGlmerDevfun
constructs a generalized linear mixed model deviance function
bobyqa
optimizer the deviance function
mkStrucGlmer
constructs an object of
strucGlmer-class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | strucGlmer(formula, ...)
## Default S3 method:
strucGlmer(formula, ...)
## S3 method for class 'formula'
strucGlmer(formula, data, family, addArgs = list(),
modularVerb = FALSE, optVerb = 0L, optMaxit = 10000, weights = NULL,
offset = NULL, etastart = NULL, devfunOnly = FALSE,
numModularSteps = 4L, parList = NULL, ...)
## S3 method for class 'strucParseFormula'
strucGlmer(formula, family, optVerb = 0L,
optMaxit = 10000, weights = NULL, offset = NULL, etastart = NULL, ...)
## S3 method for class 'function'
strucGlmer(formula, optVerb = 0L, optMaxit = 10000,
parsedForm, initPars, lower, upper, ...)
## S3 method for class 'strucGlmer'
update(object, formula, parList, data = NULL,
addArgs = list(), optVerb = 0L, optMaxit = 10000, weights = NULL,
offset = NULL, etastart = NULL, ...)
|
formula |
extended mixed model formula or
|
data,family,weights,offset,etastart,devfunOnly |
see |
addArgs |
list of additional arguments to pass to |
modularVerb |
should the modular steps be announced during the fitting process? |
optVerb |
verbose |
optMaxit |
maximum number of iterations for the nonlinear optimizers |
numModularSteps |
number of modular steps to perform
(defaults to |
parList |
potential named list of initial parameters |
parsedForm |
|
initPars |
initial parameter values (required for
|
lower,upper |
lower and upper bounds of parameter values
(only useful for |
... |
further arguments to |
object |
|
1 2 3 4 | cbpp$incidenceBySize <- with(cbpp, incidence/size)
gm <- strucGlmer(incidenceBySize ~ factAnal(0 + herd | period, nAxes = 1),
data = cbpp, family = binomial, weights = cbpp$size,
penLoads = mkPenLpNorm())
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.