library(holoSimCell)
devtools::load_all()
### imputed, popmap (individualID->pop mapping), pts (sample locations) and ashpred
### are now built into holoSimCell
### as built in dataframes (in data/ directory)
rownames(popmap) <- popmap[,1]
table(popmap[gsub("fp","",names(imputed)),2])
imputed.pruned=imputed[,-which(gsub("fp","",names(imputed))%in%popmap[popmap$abbrev=="Michigan","id"])]
imputed.pruned=imputed.pruned[,-which(gsub("fp","",names(imputed.pruned))%in%popmap[popmap$abbrev=="UNK","id"])]
imputed.pruned=imputed.pruned[,-which(gsub("fp","",names(imputed.pruned))%in%popmap[popmap$abbrev=="MO1","id"])]
imputed.pruned=imputed.pruned[,-which(gsub("fp","",names(imputed.pruned))%in%popmap[popmap$abbrev=="ON1","id"])]
imputed.pruned=imputed.pruned[,-which(gsub("fp","",names(imputed.pruned))%in%popmap[popmap$abbrev=="VA1","id"])]
imputed.pruned=imputed.pruned[,-which(gsub("fp","",names(imputed.pruned))%in%popmap[popmap$abbrev=="MB1","id"])]
removes <- c()
popids <- popmap[gsub("fp","",names(imputed.pruned)),2]
table(popids)
for (a in unique(popids))
{
if (sum(popids==a)>14)
{
removes <- c(removes,sample(which(popids==a),1))
}
}
imputed.pruned <- imputed.pruned[,-1*removes]
poptbl <- table(popmap[gsub("fp","",names(imputed.pruned)),2])
samppts <- pts[pts$abbrev %in% names(poptbl),]
if ((!exists("icenolakesland")))
{
##this should produce a landscape with (x,y) _square_ cells that also have
##21empirical samples in separate grid cells (otherwise need to figure out something else)
## ashland is a stored R object as well
##read in the correct raster stack
rs <- stack("study_region_daltonIceMask_noLakes_linearIceSheetInterpolation.tif")
e <- extent(rs)
corners <- (matrix(c( e[1], e[4],
e[1], e[3],
e[2], e[3],
e[2],e[4]),ncol=2,byrow=T))
colnames(corners) <- c("x","y")
rownames(corners) <- c("ul","ll","lr","ur")
icenolakes <- as.array(1-rs) #really slow! thats one reason these layers get stored
icenolakesland <- def_grid_pred(pred=icenolakes,samppts=samppts,
init.ext=c(45,65),
keep.thresh=0.05,corners=corners)
}
if (!exists("icelakesland"))
{
rs <- stack("study_region_daltonIceMask_lakesMasked_linearIceSheetInterpolation.tif")
e <- extent(rs)
corners <- (matrix(c( e[1], e[4],
e[1], e[3],
e[2], e[3],
e[2],e[4]),ncol=2,byrow=T))
colnames(corners) <- c("x","y")
rownames(corners) <- c("ul","ll","lr","ur")
icelakes <- as.array(1-rs) #really slow! thats one reason these layers get stored
icelakesland <- def_grid_pred(pred=icelakes,samppts=samppts,
init.ext=c(45,65),
keep.thresh=0.01,corners=corners)
}
landscape <- icelakesland
if (!uniqueSampled(landscape))
{
stop("The landscape you are using is combining multiple sampled populations into a single raster cell")
}
###seed is based on time in seconds and the number of characters in the library path
###
###
sec=as.numeric(Sys.time())-1500000000
lp= as.numeric(as.character(nchar(paste(.libPaths(), collapse = " "))))
slp <- as.integer(floor(sec*lp))
set.seed(as.integer(sec))
ph = getpophist2.cells(hab_suit=landscape,
refs=(540),
refsz=100,
mix=0.005, #note how small.
shortscale=0.04, # scale parameter of weibull with shape below
shortshape=1, #weibull shape
longmean=0.15, # mean of normal with sd = longmean
sz=1) #size of a cell (same units as longmean and shortscale)
if (!testPophist(ph,landscape))
{
print("here is where we could do something about non-colonized sample pops")
}
gmap=make.gmap(ph$pophist,
xnum=2, #number of cells to aggregate in x-direction
ynum=2) #number of aggregate in the y-direction
if (doesGmapCombine(gmap,landscape))
{
stop("Need to look at the resolutions because this gmap combines sampled populations")
}
ph2 <- pophist.aggregate(ph,gmap=gmap)
if(FALSE){
pdf("aggregate_example.pdf")
plothist(ph)
plothist(ph2)
dev.off()
}
outdir <- "~/Desktop"
simdir <- outdir
parms <- drawParms(control = system.file("extdata/csv","priors.csv",package="holoSimCell"))
parms$seq_length <- 80
parms$mu <- 1e-8
loc_parms <- data.frame(marker = "snp",
nloci = parms$nloci,
seq_length = parms$seq_length,
mu = parms$mu)
preLGMparms <- data.frame(preLGM_t = parms$preLGM_t/parms$G, #Time / GenTime
preLGM_Ne = parms$preLGM_Ne,
ref_Ne = parms$ref_Ne)
parms_out <- as.data.frame(c(ph$struct[which(!names(ph$struct) %in% names(parms))], parms))
#With smaller K, some populations have very very low N at the end of the simulation
#In those cases, we need to inflate N a bit for the coalescent simulation
ph2$Nvecs[ph2$Nvecs[,702] > 0 & ph2$Nvecs[,702] < 1,702] <- 1
#Run the coalescent simulation
setwd(simdir)
#For easy testing of runFSC_step_agg2() guts
if(FALSE) {
phOLD <- ph
ph <- ph2
l <- landscape
num_cores <- 1
label <- "NewTest"
exec <- "fsc26"
sample_n <- 14
found_Ne <- 50
}
out <- runFSC_step_agg3(ph = ph2, #A new pophist object - (pophist, Nvecs, tmat, struct, hab_suit, coalhist)
l = landscape, #A new landscape object - (details, occupied, empty, sampled, hab_suit, sumrast, samplocsrast, samplocs)
sample_n = 14, #Number of sampled individuals per population
preLGMparms = preLGMparms, #This has parms for the refuge, preLGM size and timing
label = "test_agg", #Label for FSC simulation files
delete_files = TRUE, #Logical - clear out .par, .arp, and other FSC outputs?
num_cores = 1, #Number of processors to use for FSC
exec = "fsc26", #Executable for FSC (needs to be in a folder in the system $PATH)
loc_parms = loc_parms, #Vector of locus parameters
found_Ne = parms$found_Ne, #Founding population size, required for STEP change model
gmap = gmap, #Mapping the original population onto aggregated grid
MAF = 0.01 #Minor allele frequency threshold, loci with minor allele frequencies below this value are excluded from sim
)
popDF <- makePopdf(landscape,"cell")
stats <- holoStats(out, popDF, cores = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.