Description Usage Arguments Value Author(s) References See Also Examples
The main function of gene set enrichment analysis
1  | GSEnrichAnalyze(gene.set, gene.score, gene.score.perm, weighted.type = 1)
 | 
gene.set | 
 a SeqGeneSet object.  | 
gene.score | 
 a vector of integrated gene scores in the same order as genes listed in the   | 
gene.score.perm | 
 a matrix of integrated gene scores on permutation data sets; row: genes; col: permutation.  | 
weighted.type | 
 weight type for gene scores; default: 1.  | 
A SeqGeneSet object with many slots updated, such as GSEA.ES and GSEA.pval.
Xi Wang, xi.wang@newcastle.edu.au
Xi Wang and Murray J. Cairns (2013). Gene Set Enrichment Analysis of RNA-Seq Data: Integrating Differential Expression and Splicing. BMC Bioinformatics, 14(Suppl 5):S16.
1 2 3 4 5 6 7 8 9  | data(DEscore, package="SeqGSEA")
data(DSscore, package="SeqGSEA")
gene.score <- geneScore(DEscore, DSscore, method="linear", DEweight = 0.3)
data(DEscore.perm, package="SeqGSEA")
data(DSscore.perm, package="SeqGSEA")
gene.score.perm <- genePermuteScore(DEscore.perm, DSscore.perm, method="linear",  DEweight=0.3)
data(GS_example, package="SeqGSEA") 
GS_example <- GSEnrichAnalyze(GS_example, gene.score, gene.score.perm)
topGeneSets(GS_example, 5)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.