Description Usage Arguments Value Author(s) References See Also Examples
The main function of gene set enrichment analysis
1 | GSEnrichAnalyze(gene.set, gene.score, gene.score.perm, weighted.type = 1)
|
gene.set |
a SeqGeneSet object. |
gene.score |
a vector of integrated gene scores in the same order as genes listed in the |
gene.score.perm |
a matrix of integrated gene scores on permutation data sets; row: genes; col: permutation. |
weighted.type |
weight type for gene scores; default: 1. |
A SeqGeneSet object with many slots updated, such as GSEA.ES
and GSEA.pval
.
Xi Wang, xi.wang@newcastle.edu.au
Xi Wang and Murray J. Cairns (2013). Gene Set Enrichment Analysis of RNA-Seq Data: Integrating Differential Expression and Splicing. BMC Bioinformatics, 14(Suppl 5):S16.
1 2 3 4 5 6 7 8 9 | data(DEscore, package="SeqGSEA")
data(DSscore, package="SeqGSEA")
gene.score <- geneScore(DEscore, DSscore, method="linear", DEweight = 0.3)
data(DEscore.perm, package="SeqGSEA")
data(DSscore.perm, package="SeqGSEA")
gene.score.perm <- genePermuteScore(DEscore.perm, DSscore.perm, method="linear", DEweight=0.3)
data(GS_example, package="SeqGSEA")
GS_example <- GSEnrichAnalyze(GS_example, gene.score, gene.score.perm)
topGeneSets(GS_example, 5)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.