#############################################################################
####################### Boosting ERWNN neural network #######################
#############################################################################
#' @title Boosting random weight neural networks
#'
#' @description Use gradient boosting to create ensemble random weight neural network models.
#'
#' @param formula A \link{formula} specifying features and targets used to estimate the parameters of the output layer.
#' @param data A data-set (either a \link{data.frame} or a \link[tibble]{tibble}) used to estimate the parameters of the output layer.
#' @param n_hidden A vector of integers designating the number of neurons in each of the hidden layers (the length of the list is taken as the number of hidden layers).
#' @param lambda The penalisation constant(s) passed to either \link{rwnn} or \link{ae_rwnn} (see \code{method} argument).
#' @param B The number of levels used in the boosting tree.
#' @param epsilon The learning rate.
#' @param method The penalisation type passed to \link{ae_rwnn}. Set to \code{NULL} (default), \code{"l1"}, or \code{"l2"}. If \code{NULL}, \link{rwnn} is used as the base learner.
#' @param type A string indicating whether this is a regression or classification problem.
#' @param control A list of additional arguments passed to the \link{control_rwnn} function.
#'
#' @return An \link{ERWNN-object}.
#'
#' @references Friedman J.H. (2001) "Greedy function approximation: A gradrient boosting machine." \emph{The Annals of Statistics}, 29, 1189-1232.
#'
#' @export
boost_rwnn <- function(formula, data = NULL, n_hidden = c(), lambda = NULL, B = 100, epsilon = 0.1, method = NULL, type = NULL, control = list()) {
UseMethod("boost_rwnn")
}
boost_rwnn_matrix <- function(X, y, n_hidden = c(), lambda = NULL, B = 100, epsilon = 0.1, method = NULL, type = NULL, control = list()) {
## Checks
if (is.null(control[["include_data"]])) {
control$include_data <- FALSE
}
if (is.null(control[["boost_schedule"]])) {
control$boost_schedule <- TRUE
}
dc <- data_checks(y, X)
if (is.null(B) | !is.numeric(B)) {
B <- 100
warning("Note: 'B' was not supplied and is therefore set to 100.")
}
if (is.null(epsilon) | !is.numeric(epsilon)) {
epsilon <- 0.1
warning("Note: 'epsilon' was not supplied and is therefore set to 0.1.")
}
else if (epsilon > 1) {
epsilon <- 1
warning("'epsilon' has to be a number between '0' and '1'.")
}
else if (epsilon < 0) {
epsilon <- 0
warning("'epsilon' has to be a number between '0' and '1'.")
}
if (is.null(control$n_features)) {
control$n_features <- ncol(X)
}
##
if (control$boost_schedule) {
w <- epsilon / sqrt(seq(1, B))
}
else {
w <- epsilon * rep(1, B)
}
##
N <- nrow(X)
y_b <- y
objects <- vector("list", B)
for (b in seq_len(B)) {
# Update residual
if (b > 1) {
y_b <- y_b - w[b] * predict(objects[[b - 1]], newdata = X)
}
# Stochastic boosting
indices_b <- sample(N, N, replace = TRUE)
y_b_i <- y_b[indices_b, , drop = FALSE]
X_b_i <- X[indices_b, , drop = FALSE]
# Train base-learner
if (is.null(method)) {
objects[[b]] <- rwnn_matrix(X = X_b_i, y = y_b_i, n_hidden = n_hidden, lambda = lambda, type = type, control = control)
}
else {
objects[[b]] <- ae_rwnn_matrix(X = X_b_i, y = y_b_i, n_hidden = n_hidden, lambda = lambda, method = method, type = type, control = control)
}
}
##
object <- list(
formula = NULL,
data = list(X = X, y = y, C = ifelse(type == "regression", NA, colnames(y))),
models = objects,
weights = w,
method = "boosting"
)
class(object) <- "ERWNN"
return(object)
}
#' @rdname boost_rwnn
#' @method boost_rwnn formula
#'
#' @example inst/examples/boostrwnn_example.R
#'
#' @export
boost_rwnn.formula <- function(formula, data = NULL, n_hidden = c(), lambda = NULL, B = 100, epsilon = 0.1, method = NULL, type = NULL, control = list()) {
# Checks for 'n_hidden'
if (length(n_hidden) < 1) {
stop("When the number of hidden layers is 0, or left 'NULL', the RWNN reduces to a linear model, see ?lm.")
}
if (!is.numeric(n_hidden)) {
stop("Not all elements of the 'n_hidden' vector were numeric.")
}
# Checks for 'data'
keep_formula <- TRUE
if (is.null(data)) {
data <- tryCatch(
expr = {
as.data.frame(as.matrix(model.frame(formula)))
},
error = function(e) {
message("'data' needs to be supplied when using 'formula'.")
}
)
x_name <- paste0(attr(terms(formula), "term.labels"), ".")
colnames(data) <- paste0("V", gsub(x_name, "", colnames(data)))
colnames(data)[1] <- "y"
formula <- paste(colnames(data)[1], "~", paste(colnames(data)[seq_along(colnames(data))[-1]], collapse = " + "))
formula <- as.formula(formula)
keep_formula <- FALSE
}
# Checks for 'method'
if (!is.null(method)) {
method <- tolower(method)
if (!(method %in% c("l1", "l2"))) {
stop("'method' has to be set to 'NULL', 'l1', or 'l2'.")
}
}
# Re-capture feature names when '.' is used in formula interface
formula <- terms(formula, data = data)
formula <- strip_terms(formula)
#
X <- model.matrix(formula, data)
keep <- which(colnames(X) != "(Intercept)")
if (any(colnames(X) == "(Intercept)")) {
X <- X[, keep, drop = FALSE]
}
#
y <- model.response(model.frame(formula, data))
y <- as.matrix(y, nrow = nrow(data))
#
if (is.null(type)) {
if (is(y[, 1], "numeric")) {
type <- "regression"
if (all(abs(y - round(y)) < 1e-8)) {
warning("The response consists of only integers, is this a classification problem?")
}
}
else if (class(y[, 1]) %in% c("factor", "character", "logical")) {
type <- "classification"
}
}
# Change output based on 'type'
if (tolower(type) %in% c("c", "class", "classification")) {
type <- "classification"
y_names <- sort(unique(y))
y <- factor(y, levels = y_names)
y <- model.matrix(~ 0 + y)
attr(y, "assign") <- NULL
attr(y, "contrasts") <- NULL
y <- 2 * y - 1
colnames(y) <- paste(y_names, sep = "")
}
else if (tolower(type) %in% c("r", "reg", "regression")) {
type <- "regression"
}
else {
stop("'type' has not been correctly specified, it needs to be set to either 'regression' or 'classification'.")
}
#
mm <- boost_rwnn_matrix(X, y, n_hidden = n_hidden, lambda = lambda, B = B, epsilon = epsilon, method = method, type = type, control = control)
mm$formula <- if (keep_formula) formula
return(mm)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.