#######################################################################################
####################### Ensemble Deep ERWNN neural network ############################
#######################################################################################
#' @title Ensemble deep random weight neural networks
#'
#' @description Use multiple layers to create deep ensemble random weight neural network models.
#'
#' @param formula A \link{formula} specifying features and targets used to estimate the parameters of the output layer.
#' @param data A data-set (either a \link{data.frame} or a \link[tibble]{tibble}) used to estimate the parameters of the output layer.
#' @param n_hidden A vector of integers designating the number of neurons in each of the hidden layers (the length of the list is taken as the number of hidden layers).
#' @param lambda The penalisation constant(s) passed to either \link{rwnn} or \link{ae_rwnn} (see \code{method} argument).
#' @param method The penalisation type passed to \link{ae_rwnn}. Set to \code{NULL} (default), \code{"l1"}, or \code{"l2"}. If \code{NULL}, \link{rwnn} is used as the base learner.
#' @param type A string indicating whether this is a regression or classification problem.
#' @param control A list of additional arguments passed to the \link{control_rwnn} function.
#'
#' @return An \link{ERWNN-object}.
#'
#' @references Shi Q., Katuwal R., Suganthan P., Tanveer M. (2021) "Random vector functional link neural network based ensemble deep learning." \emph{Pattern Recognition}, 117, 107978.
#'
#' @export
ed_rwnn <- function(formula, data = NULL, n_hidden, lambda = 0, method = NULL, type = NULL, control = list()) {
UseMethod("ed_rwnn")
}
ed_rwnn_matrix <- function(X, y, n_hidden, lambda = 0, method = NULL, type = NULL, control = list()) {
## Checks
#
control$n_hidden <- n_hidden
#
if (is.null(control[["include_data"]])) {
control$include_data <- FALSE
}
#
if (is.null(control[["include_estimate"]])) {
control$include_estimate <- FALSE
}
#
if (is.null(control[["combine_hidden"]])) {
control$combine_hidden <- FALSE
}
if (control[["combine_hidden"]]) {
control$combine_hidden <- FALSE
warning("'combine_hidden' has to be set to 'FALSE' for the 'ed_rwnn' model to function correctly.")
}
#
control <- do.call(control_rwnn, control)
#
dc <- data_checks(y, X)
##
if (is.null(method)) {
deeprwnn <- rwnn_matrix(X = X, y = y, n_hidden = n_hidden, lambda = lambda, type = type, control = control)
}
else {
deeprwnn <- ae_rwnn_matrix(X = X, y = y, n_hidden = n_hidden, lambda = lambda, method = method, type = type, control = control)
}
H <- rwnn_forward(X = X, W = deeprwnn$weights$W, activation = deeprwnn$activation, bias = deeprwnn$bias$W)
H <- lapply(seq_along(H), function(i) matrix(H[[i]], ncol = deeprwnn$n_hidden[i]))
objects <- vector("list", length(n_hidden))
for (i in seq_along(n_hidden)) {
## Set-up RWNN object
rwnn_i <- deeprwnn
rwnn_i$weights$W <- rwnn_i$weights$W[seq_len(i)]
## Estimate parameters in output layer
H_i <- H[[i]]
if (control$bias_output) {
H_i <- cbind(1, H_i)
}
O_i <- H_i
if (control$combine_input) {
O_i <- cbind(X, O_i)
}
W_i <- estimate_output_weights(O_i, y, control$lnorm, lambda)
##
rwnn_i$weights$beta <- W_i$beta
rwnn_i$sigma <- W_i$sigma
objects[[i]] <- rwnn_i
}
object <- list(
formula = NULL,
data = list(X = X, y = y, C = ifelse(type == "regression", NA, colnames(y))),
models = objects,
weights = rep(1L / length(n_hidden), length(n_hidden)),
method = "ed"
)
class(object) <- "ERWNN"
return(object)
}
#' @rdname ed_rwnn
#' @method ed_rwnn formula
#'
#' @example inst/examples/edrwnn_example.R
#'
#' @export
ed_rwnn.formula <- function(formula, data = NULL, n_hidden, lambda = 0, method = NULL, type = NULL, control = list()) {
# Checks for 'n_hidden'
if (length(n_hidden) < 1) {
stop("When the number of hidden layers is 0, or left 'NULL', the RWNN reduces to a linear model, see ?lm.")
}
if (!is.numeric(n_hidden)) {
stop("Not all elements of the 'n_hidden' vector were numeric.")
}
# Checks for 'data'
keep_formula <- TRUE
if (is.null(data)) {
data <- tryCatch(
expr = {
as.data.frame(as.matrix(model.frame(formula)))
},
error = function(e) {
message("'data' needs to be supplied when using 'formula'.")
}
)
x_name <- paste0(attr(terms(formula), "term.labels"), ".")
colnames(data) <- paste0("V", gsub(x_name, "", colnames(data)))
colnames(data)[1] <- "y"
formula <- paste(colnames(data)[1], "~", paste(colnames(data)[seq_along(colnames(data))[-1]], collapse = " + "))
formula <- as.formula(formula)
keep_formula <- FALSE
}
# Checks for 'method'
if (!is.null(method)) {
method <- tolower(method)
if (!(method %in% c("l1", "l2"))) {
stop("'method' has to be set to 'NULL', 'l1', or 'l2'.")
}
}
# Re-capture feature names when '.' is used in formula interface
formula <- terms(formula, data = data)
formula <- strip_terms(formula)
#
X <- model.matrix(formula, data)
keep <- which(colnames(X) != "(Intercept)")
if (any(colnames(X) == "(Intercept)")) {
X <- X[, keep, drop = FALSE]
}
#
y <- model.response(model.frame(formula, data))
y <- as.matrix(y, nrow = nrow(data))
#
if (is.null(type)) {
if (is(y[, 1], "numeric")) {
type <- "regression"
if (all(abs(y - round(y)) < 1e-8)) {
warning("The response consists of only integers, is this a classification problem?")
}
}
else if (class(y[, 1]) %in% c("factor", "character", "logical")) {
type <- "classification"
}
}
# Change output based on 'type'
if (tolower(type) %in% c("c", "class", "classification")) {
type <- "classification"
y_names <- sort(unique(y))
y <- factor(y, levels = y_names)
y <- model.matrix(~ 0 + y)
attr(y, "assign") <- NULL
attr(y, "contrasts") <- NULL
y <- 2 * y - 1
colnames(y) <- paste(y_names, sep = "")
}
else if (tolower(type) %in% c("r", "reg", "regression")) {
type <- "regression"
}
else {
stop("'type' has not been correctly specified, it needs to be set to either 'regression' or 'classification'.")
}
#
mm <- ed_rwnn_matrix(X, y, n_hidden = n_hidden, lambda = lambda, method = method, type = type, control = control)
mm$formula <- if (keep_formula) formula
return(mm)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.