R/inferTumHetero.R

Defines functions inferHeterogeneity

Documented in inferHeterogeneity

#' Clusters variants based on Variant Allele Frequencies (VAF).
#' @description takes output generated by read.maf and clusters variants to infer tumor heterogeneity. This function requires VAF for clustering and density estimation.
#' VAF can be on the scale 0-1 or 0-100. Optionally if copy number information is available, it can be provided as a segmented file (e.g, from Circular Binary Segmentation). Those variants in
#' copy number altered regions will be ignored.
#'
#' @details This function clusters variants based on VAF to estimate univariate density and cluster classification. There are two methods available
#' for clustering. Default using parametric finite mixture models and another method using nonparametric inifinite mixture models (Dirichlet process).
#'
#' @references Chris Fraley and Adrian E. Raftery (2002) Model-based Clustering, Discriminant Analysis and Density Estimation Journal of the American
#' Statistical Association 97:611-631
#'
#' Jara A, Hanson TE, Quintana FA, Muller P, Rosner GL. DPpackage: Bayesian Semi- and Nonparametric Modeling in R. Journal of statistical software. 2011;40(5):1-30.
#'
#' Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics. 2004;5(4):557-72.
#'
#' @param maf an \code{\link{MAF}} object generated by \code{\link{read.maf}}
#' @param vafCol manually specify column name for vafs. Default looks for column 't_vaf'
#' @param tsb specify sample names (Tumor_Sample_Barcodes) for which clustering has to be done.
#' @param dirichlet Deprecated! No longer supported. uses nonparametric dirichlet process for clustering. Default FALSE - uses finite mixture models.
#' @param minVaf filter low frequency variants. Low vaf variants maybe due to sequencing error. Default 0. (on the scale of 0 to 1)
#' @param maxVaf filter high frequency variants. High vaf variants maybe due to copy number alterations or impure tumor. Default 1. (on the scale of 0 to 1)
#' @param ignChr ignore these chromosomes from analysis. e.g, sex chromsomes chrX, chrY. Default NULL.
#' @param top if \code{tsb} is NULL, uses top n number of most mutated samples. Defaults to 5.
#' @param segFile path to CBS segmented copy number file. Column names should be Sample, Chromosome, Start, End, Num_Probes and Segment_Mean (log2 scale).
#' @param useSyn Use synonymous variants. Default FALSE.
#' @return list of clustering tables.
#' @examples
#' \dontrun{
#' laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
#' laml <- read.maf(maf = laml.maf)
#' TCGA.AB.2972.clust <- inferHeterogeneity(maf = laml, tsb = 'TCGA-AB-2972', vafCol = 'i_TumorVAF_WU')
#'}
#' @export
#' @seealso \code{\link{plotClusters}}

inferHeterogeneity = function(maf, tsb = NULL, top = 5, vafCol = NULL, segFile = NULL, ignChr = NULL, minVaf = 0, maxVaf = 1, useSyn = FALSE,dirichlet = FALSE){

  if(is.null(tsb)){
    tsb = as.character(getSampleSummary(x = maf)[1:top, Tumor_Sample_Barcode])
  }

  dat.tsb = subsetMaf(maf = maf, tsb = tsb, includeSyn = useSyn, mafObj = FALSE)

  if(nrow(dat.tsb) == 0){
    stop(paste(tsb, 'not found in MAF'))
  }

  #chromosme 1 to 22
  onlyContigs = as.character(seq(1:22))

  #dirichlet process no longer supported since DPpackage has been defunct from CRAN
  dirichlet = FALSE

  #Check if t_vaf exists
  if(!'t_vaf' %in% colnames(dat.tsb)){
    if(is.null(vafCol)){
      if(all(c('t_ref_count', 't_alt_count') %in% colnames(dat.tsb))){
        message("t_vaf field is missing, but found t_ref_count & t_alt_count columns. Estimating vaf..")
        dat.tsb[,t_vaf := t_alt_count/(t_ref_count + t_alt_count)]
      }else{
        print(colnames(dat.tsb))
        stop('t_vaf field is missing. Use vafCol to manually specify vaf column name.')
      }
    }else{
      colnames(dat.tsb)[which(colnames(dat.tsb) == vafCol)] = 't_vaf'
    }
  }

  #If given Copynumber data : Read, Sort and match it to samples in maf
  if(!is.null(segFile)){
    seg.dat = readSegs(segFile)
    seg.dat = seg.dat[Chromosome %in% onlyContigs]
    seg.dat = seg.dat[order(as.numeric(Chromosome))]
    setkey(x = seg.dat, Chromosome, Start_Position, End_Position)

    seg.tsbs = unique(seg.dat[,Sample])

    if(sum(!tsb %in% seg.tsbs) > 0){
      message("CN data for following samples not found. Ignoring them ..")
      print(tsb[!tsb %in% seg.tsbs])
      seg.tsbs = tsb[tsb %in% seg.tsbs]
    } else {
      ## This is used to keep data for selected samples
      seg.tsbs = tsb
    }

    if(length(seg.tsbs) > 0){
      seg.dat = seg.dat[Sample %in% seg.tsbs]
    }else{
      stop("None of the provided samples have copy number data.")
    }
  }

  #empty df to store cluster info
  clust.dat = c()

  #Select only required columns and sort
  dat.tsb = dat.tsb[,.(Hugo_Symbol, Chromosome, Start_Position, End_Position, Tumor_Sample_Barcode, t_vaf)]
  dat.tsb$Chromosome = as.character(dat.tsb$Chromosome)
  dat.tsb$t_vaf = as.numeric(as.character(dat.tsb$t_vaf))
  dat.tsb = dat.tsb[order(Chromosome)]
  #setkey(x = dat.tsb, Chromosome, Start_Position, End_Position)

  #If VAF is in %, covert it to fractions.
  if(max(dat.tsb$t_vaf, na.rm = TRUE) > 1){
    dat.tsb$t_vaf = dat.tsb$t_vaf/100
  }

  #Filter ignChr
  if(!is.null(ignChr)){
    dat.tsb = dat.tsb[!Chromosome %in% ignChr]
  }

  #Filter low and high vaf variants
  dat.tsb = dat.tsb[t_vaf > minVaf][t_vaf < maxVaf]

  #Change contig names 'chr' to numeric in maf (so it can match to copynumber data)
  dat.tsb$Chromosome = gsub(pattern = 'chr', replacement = '', x = dat.tsb$Chromosome, fixed = TRUE)
  dat.tsb = suppressWarnings(dat.tsb[order(as.numeric(Chromosome))]) #Generates warning for X and Y sorting, as numeric


  ################# Map variants to segments and start clustering #######################

  for(i in 1:length(tsb)){

    message('Processing ', tsb[i], '..')

    tsb.dat = dat.tsb[Tumor_Sample_Barcode %in% tsb[i]]
    tsb.dat = tsb.dat[!is.na(tsb.dat$t_vaf),]

    #nvm this. Variable for later use
    tempCheck = 0

    if(!is.null(segFile)){
      if(tsb[i] %in% seg.tsbs){
        seg = seg.dat[Sample %in% tsb[i]]
        #Map copynumber and variants; filter variants on CN altered regions.
        seg.res = filterCopyNumber(seg, tsb.dat, tempCheck, tsb[i])
        tsb.dat = seg.res[[1]]
        tsb.dat.cn.vars = seg.res[[2]]
        tempCheck = seg.res[[3]]
      }
    }

    if(nrow(tsb.dat) < 3){
      #Less than 3 variants might not be useful.
      message('Too few mutations for clustering. Skipping..')
    }else{
      #cluster
      if(dirichlet){
        #Awesome blog post on non-finite mixture models
        #http://blog.echen.me/2012/03/20/infinite-mixture-models-with-nonparametric-bayes-and-the-dirichlet-process/
        tsb.dat = dirichletClusters(tsb.dat)
      }else{
        #More than 7 clusters possible ? May not be biologically meaningful.
        #Use finite mixture model
        tsb.cluster = mclust::densityMclust(tsb.dat[,t_vaf], G = 1:7, verbose = FALSE)
        tsb.dat$cluster = as.character(tsb.cluster$classification)
        abs.med.dev = abs(tsb.dat[,t_vaf] - median(tsb.dat[,t_vaf])) #absolute deviation from median vaf
        pat.mad = median(abs.med.dev) * 100
        pat.math = pat.mad * 1.4826 /median(tsb.dat[,t_vaf])
        tsb.dat$MATH = pat.math
        tsb.dat$MedianAbsoluteDeviation = pat.mad
      }

      #Refine cluster assignment (z score > 2; mark it as an outlier)
      tsb.dat = refineClusters(clusters = tsb.dat)

      if(tempCheck == 1){
        tsb.dat = rbind(tsb.dat, tsb.dat.cn.vars, fill = TRUE)
      }

      #Update result table
      clust.dat = rbind(clust.dat, tsb.dat, fill = TRUE)
    }
  }

  if (is.null(clust.dat)) {
    message("No result, this is basically caused by no copy number neutral variants,\n you may re-run this without copy number data.")
  } else {
    #Caluclate cluster means
    clust.dat.mean = clust.dat[,mean(t_vaf), by = .(Tumor_Sample_Barcode, cluster)]
    colnames(clust.dat.mean)[ncol(clust.dat.mean)] = 'meanVaf'

    return(list(clusterData = clust.dat, clusterMeans = clust.dat.mean))
  }
}
thesushantpatil/maftools documentation built on May 18, 2020, 9:54 p.m.