context("test-binomial_learners.R -- binomial learners in a Super Learner")
library(origami)
options(sl3.verbose = FALSE)
g0 <- function(W) {
W1 <- W[, 1]
scale_factor <- 0.8
A <- plogis(scale_factor * W1)
}
gen_data <- function(n = 1000, p = 4) {
W <- matrix(rnorm(n * p), nrow = n)
colnames(W) <- paste("W", seq_len(p), sep = "")
g0W <- g0(W)
A <- rbinom(n, 1, g0W)
u <- runif(n)
df <- data.frame(W, A)
df$g0W <- g0(W)
return(df)
}
set.seed(1234)
data <- gen_data(1000)
Wnodes <- grep("^W", names(data), value = TRUE)
Anode <- "A"
task <- sl3_Task$new(data, covariates = Wnodes, outcome = Anode)
# define learners
learners <- list(
rf = make_learner(Lrnr_randomForest),
xgb = make_learner(Lrnr_xgboost),
gam = make_learner(Lrnr_gam),
glmnet = make_learner(Lrnr_glmnet),
glm_fast = make_learner(Lrnr_glm_fast),
glm_fast_true_covars = make_learner(Lrnr_glm_fast, covariates = "W1"),
mean = make_learner(Lrnr_mean)
)
# define Super Learner
binom_sl <- make_learner(Lrnr_sl, learners)
# test_that("Binomial Lrnr_sl components for debugging", {
# # debugonce(learners$xgb$.__enclos_env__$private$.train)
# # learners$xgb$base_train(task)
# stack <- make_learner(Stack, learners)
# stack_fit <- stack$train(task)
#
# fits <- stack_fit$fit_object$learner_fits
# preds <- lapply(fits, learner_fit_predict)
#
# stack_chained <- stack_fit$chain()
#
# cv_stack <- make_learner(Lrnr_cv, stack)
# cv_stack_fit <- cv_stack$train(task)
# cv_stack_chained <- cv_stack_fit$chain()
# meta_fit <- logit_metalearner$base_train(cv_stack_chained)
# coef(meta_fit)
# })
test_that("Lrnr_sl binomial integration test", {
# fit and generate predictions
sl_fit <- binom_sl$train(task)
coefs <- coef(sl_fit$fit_object$cv_meta_fit)
preds <- sl_fit$predict()
loss <- sl_fit$cv_risk(loss_loglik_binomial)
expect_equal(length(preds), nrow(task$data))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.