#' Walk Forward Model Backtest
#'
#' @description Generates an expanding window walk forward backtest.
#' @param object an object of class \dQuote{tsvets.spec}.
#' @param start numeric data index from which to start the backtest.
#' @param end numeric data index on which to end the backtest. The backtest will
#' end 1 period before that date in order to have at least 1 out of sample value
#' to compare against.
#' @param h forecast horizon. As the expanding window approaches the \dQuote{end},
#' the horizon will automatically shrink to the number of available out of sample
#' periods.
#' @param alpha optional numeric vector of coverage rates for which to calculate
#' the quantiles.
#' @param aggregate whether to create an aggregate series from the forecasts
#' (see \code{\link{tsaggregate}} for details).
#' @param weights numeric weights vector for the aggregation.
#' @param solver solver to use.
#' @param autodiff whether to use automatic differentiation for estimation.
#' This makes use of the tsvetsad package.
#' @param trace whether to show the progress bar. The user is expected to have
#' set up appropriate handlers for this using the \dQuote{progressr} package.
#' @param ... additional arguments passed to the \dQuote{auto_clean} function.
#' @return A list with the following data.tables:
#' \itemize{
#' \item prediction : the backtest table with forecasts and actuals by series
#' \item metrics: a summary performance table showing metrics by
#' forecast horizon and series
#' }
#' @note The function can use parallel functionality as long as the user has
#' set up a \code{\link[future]{plan}} using the future package.
#' @aliases tsbacktest
#' @method tsbacktest tsvets.spec
#' @rdname tsbacktest
#' @export
#'
#'
tsbacktest.tsvets.spec <- function(object, start = floor(NROW(object$target$y_orig)/2), end = NROW(object$target$y_orig),
h = 1, alpha = NULL, aggregate = FALSE, weights = NULL, solver = "nlminb",
trace = FALSE, autodiff = FALSE, ...)
{
data <- xts(object$target$y_orig, object$target$index)
lambda <- sapply(object$transform, function(x) x$lambda)
frequency <- object$target$frequency
if (object$xreg$include_xreg) {
use_xreg <- TRUE
xreg <- xts(object$xreg$xreg, object$target$index)
} else {
use_xreg <- FALSE
xreg <- NULL
}
start_date <- index(data)[start]
end_date <- index(data)[end - 1]
seqdates <- index(data[paste0(start_date,"/", end_date)])
elapsed_time <- function(idx, end_date, start_date) {
min(h, which(end_date == idx) - which(start_date == idx))
}
if (aggregate) {
if (is.null(aggregate)) {
stop("\nweights cannot be NULL when aggregate is TRUE")
}
weights <- as.numeric(weights)
if (length(weights) != ncol(data)) stop("\nweights must be a vector of
length equal to ncol data.")
}
# setup backtest indices
horizon <- sapply(1:length(seqdates), function(i){
min(h, elapsed_time(index(data), index(data)[end], seqdates[i]))
})
if (!is.null(alpha)) {
if (any(alpha <= 0)) {
stop("\nalpha must be strictly positive")
}
if (any(alpha >= 1)) {
stop("\nalpha must be less than 1")
}
quantiles <- as.vector(sapply(1:length(alpha), function(k) c(alpha[k]/2, 1 - alpha[k]/2)))
} else {
quantiles <- NULL
}
if (trace) {
prog_trace <- progressor(length(seqdates))
}
b %<-% future_lapply(1:length(seqdates), function(i) {
if (trace) prog_trace()
y_train <- data[paste0("/", seqdates[i])]
ix <- which(index(data) == seqdates[i])
y_test <- data[(ix + 1):(ix + horizon[i])]
if (use_xreg) {
xreg_train <- xreg[index(y_train)]
xreg_test <- xreg[index(y_test)]
xreg_g <- object$xreg$xreg_include
} else {
xreg_train <- NULL
xreg_test <- NULL
xreg_g <- NULL
}
spec <- vets_modelspec(y_train, level = object$model$level, slope = object$model$slope,
damped = object$model$damped, seasonal = object$model$seasonal,
xreg = xreg_train, xreg_include = xreg_g, group = object$model$group,
frequency = object$target$frequency, lambda = lambda, lower = 0,
upper = 1, dependence = object$dependence$type)
mod <- estimate(spec, solver = solver, autodiff = autodiff, ...)
p <- predict(mod, h = horizon[i], newxreg = xreg_test, forc_dates = index(y_test))
if (aggregate) {
ap <- tsaggregate(p, weights = weights)
dp <- data.table(series = "Aggregate", Level = list(), Slope = list(), Seasonal = list(), X = list(), Error = list(), Predicted = list(ap))
p$prediction_table <- rbind(p$prediction_table, dp)
y_test <- cbind(y_test, xts(coredata(y_test) %*% weights, index(y_test)))
colnames(y_test)[ncol(y_test)] <- "Aggregate"
}
if (!is.null(quantiles)) {
qp <- lapply(1:nrow(p$prediction_table), function(j){
qpout <- apply(p$prediction_table[j]$Predicted[[1]]$distribution, 2, quantile, quantiles)
if (length(quantiles) == 1) {
qpout <- matrix(qpout, ncol = 1)
} else{
qpout <- t(qpout)
}
colnames(qpout) <- paste0("P", round(quantiles*100))
qpout <- as.data.table(qpout)
return(qpout)
})
qp <- rbindlist(qp)
}
out <- lapply(1:nrow(p$prediction_table), function(j){
data.table(series = p$prediction_table[j]$series,
"estimation_date" = rep(seqdates[i], horizon[i]),
"horizon" = 1:horizon[i],
"size" = rep(nrow(y_train), horizon[i]),
"forecast_dates" = as.character(index(y_test)),
"forecast" = as.numeric(colMeans(p$prediction_table[j]$Predicted[[1]]$distribution)),
"actual" = as.numeric(y_test[,j]))
})
out <- rbindlist(out)
if (!is.null(quantiles)) out <- cbind(out, qp)
return(out)
}, future.packages = c("tsmethods","tsaux","xts","tsvets","data.table"), future.seed = TRUE)
b <- eval(b)
b <- rbindlist(b)
actual <- NULL
forecast <- NULL
metrics <- b[,list(MAPE = mape(actual, forecast),
MSLRE = mslre(actual, forecast),
BIAS = bias(actual, forecast),
n = .N), by = c("series","horizon")]
if (!is.null(alpha)) {
q_names <- matrix(paste0("P", round(quantiles*100)), ncol = 2, byrow = TRUE)
q <- do.call(cbind, lapply(1:length(alpha), function(i){
b[,list(mis = mis(actual, get(q_names[i,1]), get(q_names[i,2]), alpha[i])), by = c("series","horizon")]
}))
q <- q[,which(grepl("mis",colnames(q))), with = FALSE]
colnames(q) <- paste0("MIS[",alpha,"]")
metrics <- cbind(metrics, q)
}
return(list(prediction = b, metrics = metrics))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.