# combine_pipeline_output = function(pipeline_output_dir, metadata_rds) {
# # loading in the metadata
# metadata = readRDS(metadata_rds)
#
# #subset for testing
# metadata = metadata[2:2,]
# metadata$run_accession = c("ERR833291")
#
#
# run_accessions = list.files(path = paste0(pipeline_output_dir, "/quast/"))
#
# run_accessions = run_accessions[1]
#
# # adding quast transposed report tsv per sample to metadata
# quast_total = data.frame()
# # reADING FILES
# for (run_accession in run_accessions){
# quast_file = paste0(pipeline_output_dir, "/quast/", run_accession, "/transposed_report.tsv")
# quast_output = read.delim(file = quast_file, header = TRUE, sep = "\t")
# quast_output$run_accession = run_accession
# quast_total = rbind(quast_total, quast_output)
# }
# metadata = join(metadata, quast_total, type = "left")
#
#
# #adding prokka
# prokka_total = data.frame()
# for (run_accession in run_accessions){
# prokka_file = paste0(pipeline_output_dir, "/prokka/", run_accession, "/", run_accession, ".tsv")
# prokka_output = read.delim(file = prokka_file, header = TRUE, sep = "\t")
# prokka_output$run_accession = run_accession
# prokka_total = rbind(prokka_total, prokka_output)
# }
# metadata = join(metadata, prokka_total)
#
#
# # adding CAT taxonomy
# tax_total = data.frame()
# for (run_accession in run_accessions){
# tax_file = paste0(pipeline_output_dir, "/CAT/", run_accession, "/taxonomy.txt")
# tax_output = read.delim(file = tax_file, header = TRUE, sep = "\t")
# tax_output$run_accession = run_accession
# tax_total = rbind(tax_total, tax_output)
# }
#
# metadata = join(metadata, tax_total)
#
#
# #devtools::install_github("rstudio/sparklyr")
# spark_install()
# library(sparklyr)
# sc <- spark_connect(master = "local")
#
# readr::write_csv(tax_total, path = "~/tax_ERR83291.csv")
#
#
#
# metadata_291 = sparklyr::spark_read_csv(sc = sc, name = "metadata_291",
# path = "~/metadata_ERR83291.csv")
# tax_291 = sparklyr::spark_read_csv(sc = sc, name = "tax_291",
# path = "~/tax*.csv")
# totaldata_305 = sparklyr::spark_read_csv(sc = sc, name = "totaldata_305",
# path = "~/*305.csv")
#
# x = left_join(tax_291, metadata_291)
# x %>% filter(superkingdom != "Bacteria")
#
#
#
# metadata = merge(metadata, tax_total)
#
#
# saveRDS(metadata, "~/metadata")
#
# }
#
# library(dplyr)
# library(plyr)
# combine_pipeline_output(pipeline_output_dir = "/data/test_singlep",
# metadata_rds = "/data/MGYS00000410_metadata.RDS")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.