RandomSet | R Documentation |
This function uses the Random Set method to test for enriched biological categories in gene expression data.
RandomSet(sigvals, geneids, database = "GO", functionalCategories = NULL,
species = "Hs", min.g = 10, minGenesInCategory = NULL, max.g = NA,
maxGenesInCategory = NULL, sig.cutoff = 0.1, sigFDR = NULL,
averageMultipleProbes = TRUE, allGenesInCategoriesAsBackground=TRUE,
two.sided = FALSE, na.rm=TRUE, verbose = TRUE)
RS(sigvals, geneids, database = "GO", functionalCategories = NULL,
species = "Hs", min.g = 10, minGenesInCategory = NULL, max.g = NA,
maxGenesInCategory = NULL, sig.cutoff = 0.1, sigFDR = NULL,
averageMultipleProbes = TRUE, allGenesInCategoriesAsBackground=FALSE,
two.sided = FALSE, na.rm=TRUE, verbose = TRUE)
sigvals |
A vector of p-values, same length and order as "geneids" |
geneids |
A vector of Entrez gene IDs, may contain duplicates and missing values |
min.g |
Deprecated. Please use 'minGenesInCategory' instead. |
minGenesInCategory |
The minimum number of unique gene IDs analyzed in category to be tested, if NULL it is set to 0. |
max.g |
Deprecated. Please use 'minGenesInCategory' instead. |
maxGenesInCategory |
The maximum number of unique gene IDs analyzed in category to be tested, if NULL it is set to Inf. |
sig.cutoff |
Deprecated. Please use 'sigFDR' instead. |
sigFDR |
Categories with FDR <= sigFDR will be returned. If NULL it is set to 1. |
database |
Deprecated. Please use 'functionalCategories' instead. |
functionalCategories |
Functional categories to be tested- currently, options include "GO", "KEGG" and various other categories, default = "GO". Can be provided by function getFunctionalCategories(). |
species |
Species to further specify database, human="Hs", mouse="Mm", rat="Rn", etc. Default ="Hs". |
averageMultipleProbes |
If multiple probes per geneID, the (geometric) mean is computed. |
allGenesInCategoriesAsBackground |
If TRUE, all genes in a list of functional categories (e.g. "GO") will be used as background gene list, and computations are limited to intersection of background and genes in "geneids" paramter. |
two.sided |
If TRUE, the two-sided p-value is computed. |
na.rm |
If TRUE, potential NAs and NaNs in sigvals are removed before computing the Random Set statistic. |
verbose |
If TRUE, produces lots of output. |
This function uses the Random Set method (Newton et al., 2007) to test for enriched biological categories in gene expression data.
Object is a dataframe with the following columns: category ID category description n.genes - number of genes overlapping between gene list and category zScore - the random set z-score p-value - the corresponding (one-sided or two-sided) p-value FDR - False Discovery Rate (Benjamini & Hochberg, 1995)
Johannes Freudenberg
Newton, 2007. Annals App Stat 'Random Set Methods Identify Distinct Aspects of the Enrichment Signal in Gene Set Analysis'
LRpath
, GO.db
, KEGG.db
, gimmR
data(gimmOut)
p <- rbeta(94, 0.5, 2)
res <- RandomSet(sigvals=p, geneids=gimmOut$clustData[,1], functionalCategories=c("GO", "KEGG"), species="Rn")
names(res)
head(res[[1]])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.