## Copyright (C) 2004 Harald SCHMIDBAUER - Vehbi Sinan TUNALIOGLU
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2, or (at your option)
## any later version.
##
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## A copy of the GNU General Public License is available via WWW at
## http://www.gnu.org/copyleft/gpl.html. You can also obtain it by
## writing to the Free Software Foundation, Inc., 59 Temple Place,
## Suite 330, Boston, MA 02111-1307 USA.
## This is version 03:
## In the Gamma-Term, the counting of parameter matrices in buff.par and buff.par.transposed
## is altered from 'tmp.count + 1' to 'tmp.count + 1 + order[1] + order[2]' refering to the Gamma matrices
## (lines 429f).
##' @export
mGJR.est<-
function(
eps1, # first time series
eps2, # second time series
order = c(1,1,1), # order of the mGJR(p,q,g) model to be estimated c(p,q,g)
params = NULL, # initial parameters for the optim function
fixed = NULL, # parameter list that are to be fixed
method = "BFGS" # the method that will be used in the optim process
)
{
# check the given time series
if(length(eps1) != length(eps2))
{
stop("time series are different in length")
}
# check the given order
# orders should be integers
if(order[1] != as.integer(order[1]) || order[2] != as.integer(order[2]) || order[2] != as.integer(order[2]))
{
stop("order should contain integer values")
}
# GARCH and GJR effect could be set to 0, but, ARCH could not be 0
if(order[1] < 0 || order[3] < 0 || order[2] < 1)
{
stop("mGJR(",order[1],",",order[2],",",order[3],") is not implemented.")
}
# construct the paramters list.
if(order[3] > 0)
{
tempw = 1
}
else
{
tempw = 0
}
length.params = 3 + (order[1] * 4) + (order[2] * 4) + (order[3] * 4) + tempw # set the length of the parameter list
if(is.null(params))
{
# WARNING
# for order = 0x1x0 1x1x0, 1x2x0, 2x1x0,2x2x0 we do offer some initial parameter lists.
# for other trials, the remaining parameters are set to `0'
if(order[1] == 0 && order[2] == 1 && order[3] == 0)
{
params = c(2, 0, 2, 0.4, 0.1, 0.1, 0.4)
}
else if(order[1] == 1 && order[2] == 1 && order[3] == 0)
{
params = c(2, 0, 2, 0.4, 0.1, 0.1, 0.4, 0.4, 0.1, 0.1, 0.4)
}
else if(order[1] == 2 && order[2] == 1 && order[3] == 0)
{
params = c(2, 0, 2, 0.4, 0.1, 0.1, 0.4, 0.4, 0.1, 0.1, 0.4, 0.2, 0.1, 0.1, 0.2)
}
else if(order[1] == 1 && order[2] == 2 && order[3] == 0)
{
params = c(2, 0, 2, 0.4, 0.1, 0.1, 0.4, 0.2, 0.1, 0.1, 0.2, 0.4, 0.1, 0.1, 0.4)
}
else if(order[1] >= 2 && order[2] >= 2 && order[3] == 0)
{
params = c(2, 0, 2, 0.4, 0.1, 0.1, 0.4, 0.2, 0.1, 0.1, 0.2, rep(0,(order[2] - 2) * 4), 0.4, 0.1, 0.1, 0.4, 0.2, 0.1, 0.1, 0.2, rep(0,(order[1] - 2) * 4))
}
else if(order[1] >= 1 && order[2] >= 1 && order[3] >= 0)
{
params = c(2, 0, 2, 0.4, 0.1, 0.1, 0.4, rep(0,(order[2] - 1) * 4), 0.4, 0.1, 0.1, 0.4, rep(0,(order[1] - 1) * 4), rep(0.1,(order[3]) * 4), 0.5)
}
else
{
params = c(rep(0, length.params - 1), 0.5)
}
cat("\nWarning: initial values for the parameters are set at:\n\t", params,"\n")
}
else if(length(params) != length.params)
{
stop("length of the initial parameter list doesn't conform required length (3 + (order[1] * 4) + (order[2] * 4) + (order[3] * 4) + 1).");
}
# check the given fixed parameters
if(!is.null(fixed))
{
# check the format of the fixed parameters
if(!is.array(fixed))
{
stop("fixed should be an array of two vectors. Try fixed = array(c(a,b,c,d,...), dim = c(2,y))")
}
if(dim(fixed)[1] != 2)
{
stop("fixed should be an array of two vectors. Try fixed = array(c(a,b,c,d,...), dim = c(2,y))")
}
if(length(fixed[1,]) != length(fixed[2,]))
{
stop("fixed should be an array of two vectors. Try fixed = array(c(a,b,c,d,...), dim = c(2,y))")
}
# check the first dimension, if it contains appropriate index values,
# that is integer values rather than floating or negative numbers
for(count in 1:length(fixed[1,]))
{
if((fixed[1,count] != as.integer(fixed[1,count])) || (fixed[1,count] <= 0))
{
stop("First dimension of the fixed array should contain only positive integer values for indexing purposes")
}
}
# check the length of the fixed parameters
if(length(fixed[1,]) > length(params))
{
stop("fixed array could not contain more index-value pairs than the params array length");
}
}
# check the method specified in the argument list
if(!(
(method == "Nelder-Mead") ||
(method == "BFGS") ||
(method == "CG") ||
(method == "L-BFGS-B") ||
(method == "SANN")
))
{
stop("'", method, "' method is not available")
}
fake.params = params
if(!is.null(fixed))
{
# extract the parameters specified in the fixed list.
fake.params = params
for(i in 1:length(fixed))
{
fake.params[fixed[1,][i]] = NA
}
fake.params = na.omit(fake.params)
}
# parameters seem appropriate
# define the loglikelihood function
loglikelihood.GJR <- function(params)
{
loglikelihood.GJR <- .C("loglikelihood_GJR",
as.vector(params, mode = "double"),
as.vector(fixed[1,], mode = "integer"),
as.vector(fixed[2,], mode = "double"),
as.integer(length(fixed[1,])),
as.vector(eps1, mode = "double"),
as.vector(eps2, mode = "double"),
as.integer(length(eps1)),
as.vector(order, mode = "integer"),
retval = 0.0,
PACKAGE = "mgarch"
)
if(is.nan(loglikelihood.GJR$retval) == T)
{
nonusedret = 1e+100
}
else
{
nonusedret = loglikelihood.GJR$retval
}
nonusedret
}
# begin estimation process
# first log the start time
start = Sys.time()
cat("Starting estimation process via loglikelihood function implemented in C.\n")
cat("Optimization Method is '", method, "'\n")
# call the optim function
estimation = optim(fake.params, loglikelihood.GJR, method = method, hessian = T)
# estimation completed
cat("Estimation process completed.\n")
# log estimation time
est.time = difftime(Sys.time(), start)
# calculate the AIC
# it is estimation value + number of estimated parameters
aic = estimation$value + (length(params) - length(fixed[1,]))
# following script will prepare an object that holds the estimated
# parameters and some useful diagnostics data like estimated correlation,
# standard deviation, eigenvalues and so on.
# TODO
# estimation$hessian is non-existing if fixed parameter list contains all the
# paramters to be estimated. That is that the estimation procedure gets no parameters,
# thus, there is no errors... Fix it... How? Whether encapsulate with an "if" statement, probably not
# efficient, or give a fake hessian
# give a fake hessian
if(length(fake.params) == 0)
{
estimation$hessian = matrix(c(0,0.1,0.2,0), nrow = 2, ncol = 2)
}
# get the hessian matrix and grap the diagonal
inv.hessian.mat = solve(estimation$hessian)
diag.inv.hessian = array(rep(1,dim(inv.hessian.mat)[1]))
for(count in 1:dim(inv.hessian.mat)[1])
{
diag.inv.hessian[count] = sqrt(inv.hessian.mat[count,count])
}
# fix the asymptotic-theory standard errors of the
# coefficient estimates with fixed parameters
if(!is.null(fixed))
{
temp.diag.inv.hessian = numeric()
shifted = 0
for(count in 1:length.params)
{
check.point = 0
for(i in 1:length(fixed[1,]))
{
if(count == fixed[1,i])
{
check.point = 1
shifted = shifted + 1
temp.diag.inv.hessian[count] = 0
break
}
}
if(check.point == 0)
{
temp.diag.inv.hessian[count] = diag.inv.hessian[count - shifted]
}
}
diag.inv.hessian = temp.diag.inv.hessian
}
# construct the asymptotic-theory standard errors of the coefficient estimates matrices
parnum = 1 + order[1] + order[2] + order[3] # calculate number of paramater matrices
asy.se.coef = list() # declare the asy.se.coef matrices list
# first initialize the first asy.se.coef matrix, corresponding to the C matrix
asy.se.coef[[1]] = array(c(diag.inv.hessian[1], 0, diag.inv.hessian[2], diag.inv.hessian[3]), dim = c(2,2))
# following loop initalizes the ARCH and GARCH parameter matrices respectively
for(count in 1:(parnum - 1))
{
asy.se.coef[[count + 1]] = array(diag.inv.hessian[(4 + (count - 1) * 4):(8 + (count - 1) * 4)], dim = c(2,2));
}
asy.se.coef[[parnum + 1]] = diag.inv.hessian[length.params]
buff.par = list() # declare the parameter list
# shift the fixed parameters inside the estimated paramters
if(!is.null(fixed))
{
estim.params = numeric()
shifted = 0
for(count in 1:length.params)
{
check.point = 0
for(i in 1:length(fixed[1,]))
{
if(count == fixed[1,i])
{
check.point = 1
shifted = shifted + 1
estim.params[count] = fixed[2,i]
break
}
}
if(check.point == 0)
{
estim.params[count] = estimation$par[count - shifted]
}
}
}
else
{
estim.params = estimation$par
}
# first initialize the C matrix
buff.par[[1]] = array(c(estim.params[1], 0, estim.params[2], estim.params[3]), dim = c(2,2))
# following loop initalizes the ARCH and GARCH parameter matrices respectively
for(count in 1:(parnum - 1))
{
buff.par[[count + 1]] = array(estim.params[(4 + (count - 1) * 4):(8 + (count - 1) * 4)], dim = c(2,2));
}
buff.par[[parnum + 1]] = estim.params[length.params]
# calculate the transposes of the parameter matrices
buff.par.transposed = list()
for(count in 1:parnum)
{
buff.par.transposed[[count]] = t(buff.par[[count]])
}
# start diagnostics
cat("Starting diagnostics...\n")
cat("Calculating estimated:\n 1. residuals,\n 2. correlations,\n 3. standard deviations,\n 4. eigenvalues.\n")
HLAGS = list() # list of H lags that will be used later in the MGARCH implementation
for(count in 1:max(order))
{
HLAGS[[count]] = array(c(1,0,0,1), dim = c(2,2))
}
T = length(eps1) # length of the series
resid1 = numeric() # declare the first residual series
resid2 = numeric() # declare the second residual series
# initialize the first residuals we are not able to calculate
for(count in 1:max(order))
{
resid1[count] = 0
resid2[count] = 0
}
resid = array(c(0,0), dim = c(2,1)) # declare a temporary residuals buffer
# calculate eigenvalues
temp = 0
for(count in 2:parnum)
{
temp = temp + kronecker(buff.par[[count]], buff.par[[count]])
}
eigenvalues = svd(temp)$d
# compute the unconditional covariance matrix
numerat = t(buff.par[[1]]) %*% buff.par[[1]]
dim(numerat) = c(4,1)
denom = solve(diag(c(1,1,1,1)) - temp)
sigma = denom %*% numerat
dim(sigma) = c(2,2)
H = sigma # to initialize: assign the unconditional covariance matrix to the H matrix :)
H.estimated = array(c(var(eps1), cov(eps1, eps2), cov(eps1, eps2), var(eps2)), dim = c(2,2,T)) # declare the estimated H series
cor = numeric() # declare the estimated correlation series
sd1 = numeric() # declare the first estimated standard deviation series
sd2 = numeric() # declare the second estimated standard deviation series
eps = array(c(0,0), dim = c(2,1)) # declare a temporary eps buffer
CTERM = buff.par.transposed[[1]] %*% buff.par[[1]] # calculate the C'C term
for(count in (max(order) + 1):T) # cruical loop! initializing diagnostics data
{
# do the swap calculation for H terms
if(order[1] >= 2)
{
for(tmp.count in max(order):2)
{
HLAGS[[tmp.count]] = HLAGS[[(tmp.count - 1)]]
}
}
HLAGS[[1]] = H
# a bit complicated but following explanation will be useful hopefully
# H = (C')x(C) + (A')(E_t-1)(E_t-1')(A) + (B')(E_t-2)(E_t-2')(B) + ... + (G')(H_t-1)(G) + (L')(H_t-2)(L) + ...
# |_____________| |_____________| |____________| |____________| |_____|
# E1 TERM E2 TERM G1 TERM G2 TERM G3.G4..
# |____________________| |____________________| |_____|
# A1 TERM A2 TERM A3.A4..
# |______| |_____________________________________________________| |______________________________________|
# C TERM A TERM G TERM
H = CTERM
ord1 = 1
for(tmp.count in 1:(order[2] + order[1]))
{
if(tmp.count <= order[2])
{
# ARCH EFFECT (A TERM)
eps = array(c(eps1[count - tmp.count], eps2[count - tmp.count]), dim = c(2,1)) # E TERM
H = H + buff.par.transposed[[(tmp.count + 1)]] %*% eps %*% t(eps) %*% buff.par[[(tmp.count + 1)]]
}
else
{
# GARCH EFFECT (G TERM)
H = H + buff.par.transposed[[(tmp.count + 1)]] %*% HLAGS[[ord1]] %*% buff.par[[(tmp.count + 1)]]
ord1 = ord1 + 1
}
}
for(tmp.count in 1:order[3])
{
# ARCH EFFECT (A TERM)
eps = array(c(eps1[count - tmp.count], eps2[count - tmp.count]), dim = c(2,1)) # E TERM
# THE FOLLOWING MODIFIED BY HARALD, 2004-06-18
# if(buff.par[[parnum + 1]]*eps1[count - tmp.count] + (1 - buff.par[[parnum + 1]])*eps2[count - tmp.count] > 0)
# {
# S = 1
# }
# else
# {
# S = 0
# }
S = 1-0.5*((cos(pi/4+buff.par[[parnum + 1]])*eps1[count - tmp.count]+sin(pi/4+buff.par[[parnum + 1]])*eps2[count - tmp.count])/sqrt(eps1[count - tmp.count]^2+eps2[count - tmp.count]^2)+1)
H = H + S*buff.par.transposed[[(tmp.count + 1 + order[1] + order[2])]] %*% eps %*% t(eps) %*% buff.par[[(tmp.count + 1 + order[1] + order[2])]]
}
# TODO add appropriate comments for following assignments and calculations
H.estimated[,,count] = H
svdH = svd(H)
sqrtH = svdH$u %*% diag(sqrt(svdH$d)) %*% t(svdH$v)
eps = array(c(eps1[count], eps2[count]), dim = c(2,1))
invsqrtH = solve(sqrtH)
resid = invsqrtH %*% eps
resid1[count] = resid[1,1]
resid2[count] = resid[2,1]
cor[count] = H[1,2]/(sqrt(H[1,1] * H[2,2]))
sd1[count] = sqrt(H[1,1])
sd2[count] = sqrt(H[2,2])
}
# diagnostics ready
cat("Diagnostics ended...\n")
names(order) <- c("GARCH component", "ARCH component", "HJR component")
names(buff.par) <- as.integer(seq(1, parnum + 1))
mGJR.est <- list(
eps1 = eps1,
eps2 = eps2,
series.length = T,
estimation.time = est.time,
total.time = difftime(Sys.time(), start),
order = order,
estimation = estimation,
aic = aic,
asy.se.coef = asy.se.coef,
est.params = buff.par,
cor = cor,
sd1 = sd1,
sd2 = sd2,
H.estimated = H.estimated,
eigenvalues = eigenvalues,
uncond.cov.matrix = sigma,
resid1 = resid1,
resid2 = resid2
)
class(mGJR.est) = "mGJR.est"
cat("Class attributes are ready via following names:\n")
cat(names(mGJR.est), "\n")
return(mGJR.est)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.