Model | R Documentation |
R6 class representing modelling result
R6 class representing modelling result
prolfqua::ModelInterface
-> Model
modelDF
data.frame with modelling data and model.
modelName
name of model
subject_Id
e.g. protein_Id
model_strategy
function to create the models
anova_df
function to compute anova
p.adjust
function to adjust p-values
new()
initialize
Model$new( modelDF, model_strategy, modelName, subject_Id = "protein_Id", p.adjust = prolfqua::adjust_p_values )
modelDF
dataframe with modelling results
model_strategy
model_strategy see strategy_lmer
modelName
name of model
subject_Id
subject column name
p.adjust
method to adjust p-values
get_coefficients()
return model coefficient table
Model$get_coefficients()
get_anova()
return anova table
Model$get_anova()
write_coefficients()
writes model coefficients to file
Model$write_coefficients(path, format = "xlsx")
path
folder to write to
format
default xlsx lfq_write_table
coef_histogram()
histogram of model coefficient
Model$coef_histogram()
coef_volcano()
volcano plot of non intercept coefficients
Model$coef_volcano()
coef_pairs()
pairs-plot of coefficients
Model$coef_pairs()
anova_histogram()
histogram of ANOVA results
Model$anova_histogram(what = c("p.value", "FDR"))
what
show either "Pr..F." or "FDR.Pr..F."
write_anova_figures()
write figures related to ANOVA into pdf file
Model$write_anova_figures(path, width = 10, height = 10)
path
folder name
width
figure width
height
figure height
write_coef_figures()
write figures related to Coefficients into pdf file
Model$write_coef_figures(path, width = 10, height = 10)
path
folder name
width
figure width
height
figure height
clone()
The objects of this class are cloneable with this method.
Model$clone(deep = FALSE)
deep
Whether to make a deep clone.
Other modelling:
Contrasts
,
ContrastsMissing
,
ContrastsModerated
,
ContrastsPlotter
,
ContrastsProDA
,
ContrastsROPECA
,
ContrastsTable
,
INTERNAL_FUNCTIONS_BY_FAMILY
,
LR_test()
,
build_model()
,
contrasts_fisher_exact()
,
get_anova_df()
,
get_complete_model_fit()
,
get_p_values_pbeta()
,
isSingular_lm()
,
linfct_all_possible_contrasts()
,
linfct_factors_contrasts()
,
linfct_from_model()
,
linfct_matrix_contrasts()
,
merge_contrasts_results()
,
model_analyse()
,
model_summary()
,
moderated_p_limma()
,
moderated_p_limma_long()
,
my_contest()
,
my_contrast()
,
my_contrast_V1()
,
my_contrast_V2()
,
my_glht()
,
pivot_model_contrasts_2_Wide()
,
plot_lmer_peptide_predictions()
,
sim_build_models_lm()
,
sim_build_models_lmer()
,
sim_make_model_lm()
,
sim_make_model_lmer()
,
strategy_lmer()
,
summary_ROPECA_median_p.scaled()
istar <- prolfqua_data('data_ionstar')$normalized()
istar$config <- old2new(istar$config)
istar_data <- dplyr::filter(istar$data ,protein_Id %in% sample(protein_Id, 100))
modelName <- "f_condtion_r_peptide"
formula_randomPeptide <-
strategy_lmer("transformedIntensity ~ dilution. + (1 | peptide_Id)",
model_name = modelName)
pepIntensity <- istar_data
config <- istar$config
config$table$hierarchy_keys_depth()
mod <- prolfqua::build_model(
pepIntensity,
formula_randomPeptide,
modelName = modelName,
subject_Id = config$table$hierarchy_keys_depth())
mod$modelDF
aovtable <- mod$get_anova()
mod$get_coefficients()
mod$coef_histogram()
mod$coef_volcano()
mod$coef_pairs()
mod$anova_histogram()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.