plot_stdv_vs_mean | R Documentation |
plot stddev vs mean to asses stability of variance
plot_stdv_vs_mean(pdata, config, size = 2000)
pdata |
data.frame |
config |
AnalysisConfiguration |
size |
how many points to sample (since scatter plot to slow for all) |
Other stats:
INTERNAL_FUNCTIONS_BY_FAMILY
,
lfq_power_t_test_proteins()
,
lfq_power_t_test_quantiles()
,
lfq_power_t_test_quantiles_V2()
,
plot_stat_density()
,
plot_stat_density_median()
,
plot_stat_violin()
,
plot_stat_violin_median()
,
pooled_V2()
,
summarize_stats()
bb1 <- prolfqua::sim_lfq_data_peptide_config()
config <- bb1$config
data <- bb1$data
res <- summarize_stats(data, config)
plot_stdv_vs_mean(res, config)
datalog2 <- transform_work_intensity(data, config, log2)
statlog2 <- summarize_stats(datalog2, config)
plot_stdv_vs_mean(statlog2, config)
config$table$get_response()
config$table$pop_response()
datasqrt <- transform_work_intensity(data, config, sqrt)
ressqrt <- summarize_stats(datasqrt, config)
plot_stdv_vs_mean(ressqrt, config)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.