#' pav_heatmap
#'
#' Plot a heatmap for a object of PAV class.
#'
#' @param pav_obj A PAV object.
#' @param gene_type A vector of gene types. These can be any of the following: "core", "softcore", "distributed" and "private".
#' @param add_phen_info A character vector of `phen_info` names.
#' @param add_gene_info A character vector of `gene_info` names.
#'
#' @param pav_colors A named vector of colors for presence and absence. e.g. c(presence = "steelblue", absence = "gray70")
#' @param type_colors A named vector of colors for types. e.g. c("distributed" = "red")
#' @param gene_info_color_list A list contains named vector of colors for `gene_info` annotation.
#' e.g. list(source = c("reference" = "red", "novel" = "blue"), length = c("orange", "red"))
#' @param phen_info_color_list A list contains named vector of colors for `phen_info` annotation.
#' e.g. list(gender = c("Male" = "green", "Female" = "red"), age = c("yellow", "red"))
#'
#' @param border A logical value or a string of color indicating whether draw border.
#'
#' @param split_block A logical value indicating whether split columns based on gene types.
#' @param block_name_size The size of block name.
#' @param block_name_rot The rotation of block name.
#'
#' @param cluster_rows A logical value indicating whether perform clustering on rows.
#' @param clustering_distance_rows Method of measuring distance when clustring on rows, pass to \code{\link[stats]{dist}}.
#' @param clustering_method_rows Method to perform hierarchical clustering on rows, pass to \code{\link[stats]{hclust}}.
#' @param row_dend_side The position of the row dendrogram ("left", "right").
#' @param row_dend_width A \code{\link[grid]{unit}} object for the width of the row dendrogram.
#' @param row_sorted A vector of sorted row names. It only works when `cluster_rows = F`.
#'
#' @param show_row_names A logical value indicating whether show row names.
#' @param row_names_side The position of row names ("left", "right").
#' @param row_names_size The size of row names.
#' @param row_names_rot The rotation of row names.
#'
#' @param cluster_columns A logical value indicating whether perform clustering on columns.
#' @param clustering_distance_columns Method of measuring distance when clustring on columns, pass to \code{\link[stats]{dist}}.
#' @param clustering_method_columns Method to perform hierarchical clustering on columns, pass to \code{\link[stats]{hclust}}.
#' @param column_dend_side The position of the column dendrogram ("top", "bottom").
#' @param column_dend_height A \code{\link[grid]{unit}} object for the height of the column dendrogram.
#' @param column_sorted A vector of sorted column names. It only works when `cluster_columns = F` and `split_block = F`.
#'
#' @param show_column_names A logical value indicating whether show column names.
#' @param column_names_side The position of column names ("top", "column").
#' @param column_names_size The size of column names.
#' @param column_names_rot The rotation of column names.
#'
#' @param anno_param_row_phen A list contains parameters for the phenotype annotation. These can be any of the following:
#' "show", "width", "border", "name_size", "name_rot" and "name_side".
#' @param anno_param_column_gene A list contains parameters for the gene annotation. These can be any of the following:
#' "show", "height", "border", "name_size", "name_rot" and "name_side".
#' @param anno_param_row_stat A list contains parameters for the stat annotation of rows. These can be any of the following:
#' "show", "width", "border", "title", "title_size", "title_rot", "title_side", "axis_side", "axis_at", "axis_labels" and "axis_labels_size".
#' @param anno_param_column_stat A list contains parameters for the stat annotation of columns. These can be any of the following:
#' "show", "height", "border", "title", "title_size", "title_rot", "title_side", "axis_side", "axis_at", "axis_labels" and "axis_labels_size".
#'
#' @param legend_side The position of legend ("top", "bottom", "right", "left").
#' @param legend_title The text for the legend title.
#' @param legend_title_size The size of legend title.
#' @param legend_text_size The size of legend item labels.
#' @param legend_grid_size A \code{\link[grid]{unit}} object for the size of legend grid.
#'
#' @param use_raster Whether render the heatmap body as a raster image. pass to \code{\link[ComplexHeatmap]{Heatmap}}
#'
#' @importFrom randomcoloR distinctColorPalette
#'
#' @export
pav_heatmap <- function(
pav_obj,
gene_type,
add_phen_info = NULL,
add_gene_info = NULL,
border = T,
split_block = T, # when sort is null.
block_name_size = NULL,
block_name_rot = 0,
cluster_rows = F,
clustering_distance_rows = "euclidean",
clustering_method_rows = "complete",
row_dend_side = "left",
row_dend_width = grid::unit(5, "mm"),
row_sorted = c(), #only work when `cluster_rows` = F
show_row_names = F,
row_names_side = "right",
row_names_size = 10,
row_names_rot = 0,
cluster_columns = F,
clustering_distance_columns = "euclidean",
clustering_method_columns = "complete",
column_dend_side = "top",
column_dend_height = grid::unit(5, "mm"),
column_sorted = c(), #only work when `columncluster` = F
show_column_names = F,
column_names_side = "bottom",
column_names_size = 10,
column_names_rot = 90,
anno_param_row_phen = list(show = T, width = 5, border = F,
name_size = NULL, name_rot = 90, name_side = "top"),
anno_param_column_gene = list(show = T, height = 5, border = FALSE,
name_size = NULL, name_rot = 0, name_side = "right"),
anno_param_row_stat = list(show = T, width = 10, bar_width = 1, border = FALSE,
title = "Presence\nNumber", title_size = 10, title_side = "bottom", title_rot = 0,
axis_side = "bottom",axis_at = NULL, axis_labels = NULL, axis_labels_size = 8),
anno_param_column_stat = list(show = T, height = 10, bar_width = 1, border = FALSE,
title = "Presence\nNumber", title_size = 10, title_side = "left", title_rot = 0,
axis_side = "left",axis_at = NULL, axis_labels = NULL, axis_labels_size = 8),
pav_colors = c(presence = "steelblue", absence = "gray70"),
type_colors = NULL,
gene_info_color_list = NULL,
phen_info_color_list = NULL,
legend_side = "right",
legend_title = list(pav = "PAV", type = "gene"),
legend_title_size = NULL,
legend_text_size = NULL,
legend_grid_size = grid::unit(4, "mm"),
use_raster = NULL
){
check_class(pav_obj, "PAV")
pav_phen <- pav_obj@sample$phen
if(length(pav_phen) > 0 && !is.null(add_phen_info)){
add_phen_info <- match.arg(add_phen_info, names(pav_phen), several.ok = T)
pav_phen <- pav_phen[names(pav_phen) %in% add_phen_info]
} else {
pav_phen <- NULL
}
pav_gene_info <- pav_obj@gene$info
if(length(pav_gene_info) > 0 && !is.null(add_gene_info)){
add_gene_info <- match.arg(add_gene_info, names(pav_gene_info), several.ok = T)
pav_gene_info <- pav_gene_info[names(pav_gene_info) %in% add_gene_info]
} else {
pav_gene_info <- NULL
}
gene_type <- match.arg(gene_type, c("core", "softcore", "distributed", "private"), several.ok = TRUE)
split_block <- match_logi("split_block", split_block)
## gene_data
genes_data <- data.frame(pav_obj@gene[1:3], stringsAsFactors = F)
if(length(pav_gene_info) != 0){
genes_data <- cbind(genes_data, data.frame(pav_gene_info, stringsAsFactors = F))
}
rownames(genes_data) <- genes_data$name
## data_main
data_main <- t(pav_obj@pav_data)
if(!cluster_columns){
if(length(column_sorted) == nrow(genes_data) && all(column_sorted %in% rownames(genes_data))){
data_main <- data_main[, column_sorted]
genes_data <- genes_data[column_sorted, ]
split_block <- F
} else {
data_main <- data_main[, names(sort(colSums(data_main), decreasing = TRUE))]
genes_data <- genes_data[colnames(data_main), ]
}
}
genes_data <- subset(genes_data, type %in% gene_type)
data_main <- data_main[, rownames(genes_data)]
##sample_data
samples_data <- data.frame(pav_obj@sample[1], stringsAsFactors = F)
if(length(pav_phen) != 0){
samples_data <- cbind(samples_data, data.frame(pav_phen, stringsAsFactors = F))
}
rownames(samples_data) <- samples_data$name
if(!cluster_rows){
if(length(row_sorted) == nrow(data_main) && all(row_sorted %in% rownames(data_main))){
data_main <- data_main[row_sorted,]
samples_data <- samples_data[row_sorted,]
} else {
data_main <- data_main[names(sort(rowSums(data_main), decreasing = TRUE)), ]
samples_data <- samples_data[rownames(data_main), ]
}
}
## colors
color_pav_def <- c(presence = "steelblue", absence = "gray70")
if(!is.vector(pav_colors) || is.null(names(pav_colors)) || length(pav_colors) != 2 ||
!all(c("presence", "absence") %in% names(pav_colors))){
warning("`pav_colors` shoud be a named vector.")
color_pav <- color_pav_def
} else {
color_pav <- merge_args(color_pav_def, pav_colors)
}
color_type <- get_type_palette(type_colors)[gene_type]
phen_info_color_list_info <- get_anno_palette(c(phen_info_color_list, gene_info_color_list), c(pav_phen, pav_gene_info))
color_phen <- phen_info_color_list_info[names(pav_phen)]
color_info <- phen_info_color_list_info[names(pav_gene_info)]
## anno param
anno_param_row_phen_def_args <- list(show = T, width = 5, border = F,
name_size = NULL, name_rot = 90, name_side = "top")
anno_param_row_phen <- merge_args(anno_param_row_phen_def_args, anno_param_row_phen)
anno_param_column_gene_def_args = list(show = T, height = 5, border = FALSE,
name_size = NULL, name_rot = 0, name_side = "right")
anno_param_column_gene <- merge_args(anno_param_column_gene_def_args, anno_param_column_gene)
anno_param_row_stat_def_args = list(show = T, width = 10, bar_width = 1, border = FALSE,
title = "Presence\nNumber", title_size = 10, title_side = "bottom", title_rot = 0,
axis_side = "bottom",axis_at = NULL, axis_labels = NULL, axis_labels_size = 8)
anno_param_row_stat <- merge_args(anno_param_row_stat_def_args, anno_param_row_stat)
anno_param_column_stat_def_args = list(show = T, height = 10, bar_width = 1, border = FALSE,
title = "Presence\nNumber", title_size = 10, title_side = "left", title_rot = 0,
axis_side = "left",axis_at = NULL, axis_labels = NULL, axis_labels_size = 8)
anno_param_column_stat <- merge_args(anno_param_column_stat_def_args, anno_param_column_stat)
## anno_left
data_samplePN <- lapply(gene_type, function(x){
rowSums(data_main[, subset(genes_data, type == x)$name])})
if(anno_param_row_stat$show){
anno_param_row_stat_color <- color_type
anno_left <- ComplexHeatmap::rowAnnotation(
PN = ComplexHeatmap::anno_barplot(
data_samplePN, border = anno_param_row_stat$border,
width = grid::unit(anno_param_row_stat$width, 'mm'),
bar_width = anno_param_row_stat$bar_width,
gp = grid::gpar(fill = anno_param_row_stat_color, col = NA),
axis_param = list(side = anno_param_row_stat$axis_side,
at = anno_param_row_stat$axis_at,
labels = anno_param_row_stat$axis_labels,
direction = "reverse",
gp = grid::gpar(fontsize = anno_param_row_stat$axis_labels_size))
), annotation_label = anno_param_row_stat$title,
annotation_name_side = anno_param_row_stat$title_side,
annotation_name_rot = anno_param_row_stat$title_rot,
annotation_name_gp = grid::gpar(fontsize = anno_param_row_stat$title_size)
)
}else{
anno_left <- NULL
}
## anno_right
if(length(pav_phen) > 0){
data_phen <- samples_data[, names(pav_phen), drop = F]
if(anno_param_row_phen$show){
anno_right <- get_anno_row(data_phen, color_phen, anno_param_row_phen)
} else {
anno_right <- NULL
}
} else {
anno_right <- NULL
}
## anno_top
data_presenceN <- colSums(data_main)
if(anno_param_column_stat$show){
anno_param_column_stat_color <- color_type[match(genes_data$type, gene_type)]
anno_top <- ComplexHeatmap::HeatmapAnnotation(
PN = ComplexHeatmap::anno_barplot(
data_presenceN, bar_width = anno_param_column_stat$bar_width, border = anno_param_column_stat$border,
height = grid::unit(anno_param_column_stat$height, 'mm'),
gp = grid::gpar(fill = anno_param_column_stat_color, col = NA),
axis_param = list(side = anno_param_column_stat$axis_side,
at = anno_param_column_stat$axis_at,
labels = anno_param_column_stat$axis_labels,
gp = grid::gpar(fontsize = anno_param_column_stat$axis_labels_size))
), annotation_label = anno_param_column_stat$title,
annotation_name_side = anno_param_column_stat$title_side,
annotation_name_rot = anno_param_column_stat$title_rot,
annotation_name_gp = grid::gpar(fontsize = anno_param_column_stat$title_size)
)
} else {
anno_top <- NULL
}
#anno_bottom
if(length(pav_gene_info) > 0){
data_info <- genes_data[, names(pav_gene_info), drop = F]
if(anno_param_column_gene$show){
anno_bottom <- get_anno_column(data_info, color_info, anno_param_column_gene)
} else {
anno_bottom <- NULL
}
} else {
anno_bottom <- NULL
}
lg <- list(
ComplexHeatmap::Legend(
labels = names(color_pav),
legend_gp = grid::gpar(fill = color_pav),
title = ifelse(is.null(legend_title$pav), "PAV", legend_title$pav),
title_gp = grid::gpar(fontsize = legend_title_size, fontface = "bold"),
labels_gp = grid::gpar(fontsize = legend_text_size),
grid_height = legend_grid_size,
grid_width = legend_grid_size
), ComplexHeatmap::Legend(
labels = gene_type,
legend_gp = grid::gpar(fill = color_type),
title = ifelse(is.null(legend_title$type), "Gene", legend_title$type),
title_gp = grid::gpar(fontsize = legend_title_size, fontface = "bold"),
labels_gp = grid::gpar(fontsize = legend_text_size),
grid_height = legend_grid_size,
grid_width = legend_grid_size
))
lg_phen <- get_legend(color_phen, pav_phen, legend_title_size, legend_text_size, legend_grid_size)
lg_info <- get_legend(color_info, pav_gene_info, legend_title_size, legend_text_size, legend_grid_size)
if(split_block){
column_split <- factor(genes_data$type, levels = gene_type)
}else {
column_split <- NULL
}
ht_main <- ComplexHeatmap::Heatmap(
data_main,
name = "main",
use_raster = use_raster,
col = as.vector(color_pav[c("absence", "presence")]),
show_heatmap_legend = F,
column_split =column_split,
column_gap = grid::unit(0, "mm"),
border = border,
cluster_rows = cluster_rows,
clustering_distance_rows = clustering_distance_rows,
clustering_method_rows = clustering_method_rows,
cluster_columns = cluster_columns,
clustering_distance_columns = clustering_distance_columns,
clustering_method_columns = clustering_method_columns,
row_dend_side = row_dend_side,
row_dend_width = row_dend_width,
column_dend_side = column_dend_side,
column_dend_height = column_dend_height,
column_names_rot = column_names_rot,
column_names_gp = grid::gpar(fontsize = column_names_size),
column_names_side = column_names_side,
column_title_rot = block_name_rot,
column_title_side = "top",
column_title_gp = grid::gpar(fontsize = block_name_size, fontface = "bold"),
show_column_names = show_column_names,
cluster_column_slices = F,
show_row_names = ifelse(show_row_names & row_names_side == "left", T, F),
row_names_rot = row_names_rot,
row_names_side = row_names_side,
row_names_gp = grid::gpar(fontsize = row_names_size),
left_annotation = anno_left,
bottom_annotation = anno_bottom,
top_annotation = anno_top
)
ht_right <- ComplexHeatmap::Heatmap(
matrix(NA,ncol = 0, nrow=nrow(data_main),
dimnames = list(rownames(data_main))),
show_heatmap_legend = F,
rect_gp = grid::gpar(type = "none"),
show_row_names = ifelse(show_row_names & row_names_side == "right", T, F),
row_names_rot = row_names_rot,
row_names_side = row_names_side,
row_names_gp = grid::gpar(fontsize = row_names_size),
show_column_names = F,
right_annotation = anno_right
)
ComplexHeatmap::draw(ht_main + ht_right,
main_heatmap = "main",
auto_adjust = FALSE,
heatmap_legend_list = c(lg,lg_phen, lg_info),
merge_legend = T,
heatmap_legend_side = legend_side)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.