#' @name getIntNMF
#' @title Get subtypes from IntNMF
#' @description This function wraps the IntNMF (Integrative Clustering via Non-negative Matrix Factorization) algorithm and provides standard output for `getMoHeatmap()` and `getConsensusMOIC()`.
#' @param data List of matrices.
#' @param N.clust Number of clusters.
#' @param type Data type corresponding to the list of matrics, which can be gaussian, binomial or possion.
#' @return A list with the following components:
#'
#' \code{fit} an object returned by \link[IntNMF]{nmf.mnnals}.
#'
#' \code{clust.res} a data.frame storing sample ID and corresponding clusters.
#'
#' \code{mo.method} a string value indicating the method used for multi-omics integrative clustering.
#' @import IntNMF
#' @importFrom dplyr %>%
#' @export
#' @examples # There is no example and please refer to vignette.
#' @references Chalise P, Fridley BL (2017). Integrative clustering of multi-level omic data based on non-negative matrix factorization algorithm. PLoS One, 12(5):e0176278.
getIntNMF <- function(data = NULL,
N.clust = NULL,
type = rep("gaussian", length(data))){
# check data
n_dat <- length(data)
if(n_dat > 6){
stop('current verision of MOVICS can support up to 6 datasets.')
}
if(n_dat < 2){
stop('current verision of MOVICS needs at least 2 omics data.')
}
# remove features that made of categories not equal to 2 otherwise Error in svd(X) : a dimension is zero
if(is.element("binomial",type)) {
bindex <- which(type == "binomial")
for (i in bindex) {
a <- which(rowSums(data[[i]]) == 0)
b <- which(rowSums(data[[i]]) == ncol(data[[i]]))
if(length(a) > 0) {
data[[i]] <- data[[i]][which(rowSums(data[[i]]) != 0),] # remove all zero
}
if(length(b) > 0) {
data[[i]] <- data[[i]][which(rowSums(data[[i]]) != ncol(data[[i]])),] # remove all one
}
if(length(a) + length(b) > 0) {
message(paste0("--", names(data)[i],": a total of ",length(a) + length(b), " features were removed due to the categories were not equal to 2!"))
}
}
}
# In order to make the input data fit non-negativity constraint of intNMF,
# the values of the data were shifted to positive direction by adding absolute value of the smallest negative number.
# Further, each data was rescaled by dividing by maximum value of the data to make the magnitudes comparable (between 0 and 1) across the several datasets.
dat <- lapply(data, function (dd){
if (!all(dd >= 0)) dd <- pmax(dd + abs(min(dd)), 0) + .Machine$double.eps # .Machine$double.eps as The smallest positive floating-point number x
dd <- dd/max(dd)
return(dd %>% as.matrix)
})
# The function nmf.mnnals requires the samples to be on rows and variables on columns.
#dat <- lapply(dat, t)
dat <- lapply(dat, function(x) t(x) + .Machine$double.eps)
result.intNMF <- dat %>% IntNMF::nmf.mnnals(k = N.clust)
clust.intNMF <- result.intNMF$clusters
clustres <- data.frame(samID = colnames(data[[1]]),
clust = as.numeric(clust.intNMF),
row.names = colnames(data[[1]]),
stringsAsFactors = FALSE)
#clustres <- clustres[order(clustres$clust),]
return(list(fit = result.intNMF, clust.res = clustres, mo.method = "IntNMF"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.